Fasiakhali Wildlife Sanctuary is a protected area composed of tropical remnant rainforest that harbor substantial number of large,old Garjan(Dipterocarpus spp.)trees.The present study assessed composition,structure ...Fasiakhali Wildlife Sanctuary is a protected area composed of tropical remnant rainforest that harbor substantial number of large,old Garjan(Dipterocarpus spp.)trees.The present study assessed composition,structure and diversity of the species in this protected area.A total of 32 trees species were recorded with DBH ≥ 11 cm belonging to 24 genera and 19 families.The forest is low in plant diversity as represented by Shannon–Wiener diversity and Simpson Dominance indices.Dipterocarpus turbinatus was the most dominant species with maximum relative density,frequency,dominance,and importance value index.Syzygium firmum and Tectona grandis followed in terms of dominance.The structural composition indicated higher number of individuals in the medium growth classes(41 to 〈 511 cm DBH and 16–20 m height ranges),whereas D.turbinatus was the only species that dominated most of the growth classes.Poor stem density in lower growth classes indicated meager recruitment of regeneration which may be due to lower annual precipitation,increased grazing and encroachments.This study will help to understand the patterns of tree species composition and diversity in the remnant dipterocarp forests of Bangladesh.It will also contribute to identifying threatened plants to undertake D.turbinatus based conservation and sustainable management of the Fasiakhali Wildlife Sanctuary.展开更多
Grape pomace is one of the most abundant solid by-products generated during winemaking,rich in bioactive compounds,i.e.,proanthocyanidins.The major objective of this work was to characterize structurally oligomeric an...Grape pomace is one of the most abundant solid by-products generated during winemaking,rich in bioactive compounds,i.e.,proanthocyanidins.The major objective of this work was to characterize structurally oligomeric and polymeric proanthocyanidins of diff erent parts of grape pomace(seed,skin,and stem).Column chromatography techniques were used to isolate oligomeric and polymeric proanthocyanidins fractions from diff erent parts of grape pomace.The purifi ed grape seed proanthocyanidins were used to assess the effi ciency of the three most frequently-used acidic degradation methods,using benzyl mercaptan,phloroglucinol,and cysteamine as nucleophiles.The structural characterization of proanthocyanidins in the different parts of grape pomace was further performed by the phloroglucinolysis and ESI-MS analysis.The results showed signifi cant diff erences in the structural composition of proanthocyanidins among diff erent parts of pomace.A positive correlation was found between the mean degree of polymerization and percentage of galloylation,in both oligomeric and polymeric fractions.The results provided useful information for the preparation of diff erent proanthocyanidins products from grape pomace.展开更多
This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fi...This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs.展开更多
Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approac...Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage.展开更多
Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion m...Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion mass spectrometry (MCs^+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com- positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.展开更多
Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films i...Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.展开更多
Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficien...Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.展开更多
ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distr...ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.展开更多
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c...The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.展开更多
Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In vie...Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In view of the complex structure of the railway system,involving many subsystems,this paper analyzes the close dynamic coupling effect between railway subsystems.Based on this,taking the railway system failure as the top event,a fault tree is constructed in this paper.Then,a reliability allocation method based on the fault tree is employed to allocate the reliability index.Finally,a numerical experiment is implemented to show the performance of the reliability allocation method.Findings–The results showed that each subsystem needs to improve its reliability to meet the specified railway system reliability requirements,and the traction power supply system is the most important subsystem,which is the most efficient in improving the reliability of the railway system.Originality/value–For the first time,starting from a holistic perspective of the system,reliability allocation is carried out based on the importance of each railway subsystem.展开更多
Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,an...Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,and the weak coupling effect under complex coiled structures also limits their applications.In this work,we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect.Meanwhile,the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption.The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.展开更多
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several...The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.展开更多
The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new...The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.展开更多
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
In practical engineering applications,composite laminates frequently encounter complex multiple low-velocity impact events.The damage coupling caused by the different Angles Between Impact Positions(ABIP)is a key fact...In practical engineering applications,composite laminates frequently encounter complex multiple low-velocity impact events.The damage coupling caused by the different Angles Between Impact Positions(ABIP)is a key factor in reducing the load-bearing capacity of the laminates.It is worth noting that in real impact events,the delamination damage information of laminates is easier to capture directly.Therefore,it is crucial to predict the damage tolerance of laminates by analyzing their delamination damage images.This paper adopts an integrated finite element model to present an in-depth study on the damage characteristics and Compression-After-Impact(CAI)strength of carbon/glass hybrid laminates subjected to multiple low-velocity impacts at different ABIP.By leveraging the recognition capabilities of Convolutional Neural Networks(CNN)and taking into account the impact of noise,it aims to establish the implicit mapping relationship between delamination damage images and impact parameters,as well as CAI strength.This approach facilitates the inverse inversion of impact parameters for multiple low-velocity impacts of laminates under different ABIP,as well as effective prediction of CAI strength.展开更多
Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on unifo...Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on uniform-thickness shell designs and lack robust methodologies for generating high-resolution porous infill configurations.To address these challenges,a novel topology optimization framework for full-scale shell-filled composite structures is developed in this paper.First,a physics-driven,non-uniform partial differential equation(PDE)filter is developed,enabling precise control of variable-thickness shells by establishing explicit mapping relationships between shell thickness and filter radii.Second,this study addresses the convergence inefficiency of traditional full-scale topology optimization methods based on local volume constraints.It is revealed that a reduced influence radius exacerbates algorithm convergence challenges,thereby impeding the design of intricate porous structures.To overcome this bottleneck,a physics-driven stress skeleton generation method is developed.By integrating stress trajectories and rasterization processing,this method constructs an initial density field,effectively guiding material evolution and significantly enhancing convergence in porous structural optimization within the full-scale framework.Classical numerical examples demonstrate that our proposed optimization framework achieves biomimetic non-uniform shell thickness optimization and enables precise control of the shell thickness.Additionally,density preprocessing effectively eliminates intermediate density regions and void aggregation.Moreover,the generated trabecular-like infill patterns with spatially graded porosity,akin to multiscale topology optimization(MTO),provide an innovative solution for multifunctional,lightweight,complex shell-infill composite structures in aerospace and biomedical applications.展开更多
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho...Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.展开更多
文摘Fasiakhali Wildlife Sanctuary is a protected area composed of tropical remnant rainforest that harbor substantial number of large,old Garjan(Dipterocarpus spp.)trees.The present study assessed composition,structure and diversity of the species in this protected area.A total of 32 trees species were recorded with DBH ≥ 11 cm belonging to 24 genera and 19 families.The forest is low in plant diversity as represented by Shannon–Wiener diversity and Simpson Dominance indices.Dipterocarpus turbinatus was the most dominant species with maximum relative density,frequency,dominance,and importance value index.Syzygium firmum and Tectona grandis followed in terms of dominance.The structural composition indicated higher number of individuals in the medium growth classes(41 to 〈 511 cm DBH and 16–20 m height ranges),whereas D.turbinatus was the only species that dominated most of the growth classes.Poor stem density in lower growth classes indicated meager recruitment of regeneration which may be due to lower annual precipitation,increased grazing and encroachments.This study will help to understand the patterns of tree species composition and diversity in the remnant dipterocarp forests of Bangladesh.It will also contribute to identifying threatened plants to undertake D.turbinatus based conservation and sustainable management of the Fasiakhali Wildlife Sanctuary.
文摘Grape pomace is one of the most abundant solid by-products generated during winemaking,rich in bioactive compounds,i.e.,proanthocyanidins.The major objective of this work was to characterize structurally oligomeric and polymeric proanthocyanidins of diff erent parts of grape pomace(seed,skin,and stem).Column chromatography techniques were used to isolate oligomeric and polymeric proanthocyanidins fractions from diff erent parts of grape pomace.The purifi ed grape seed proanthocyanidins were used to assess the effi ciency of the three most frequently-used acidic degradation methods,using benzyl mercaptan,phloroglucinol,and cysteamine as nucleophiles.The structural characterization of proanthocyanidins in the different parts of grape pomace was further performed by the phloroglucinolysis and ESI-MS analysis.The results showed signifi cant diff erences in the structural composition of proanthocyanidins among diff erent parts of pomace.A positive correlation was found between the mean degree of polymerization and percentage of galloylation,in both oligomeric and polymeric fractions.The results provided useful information for the preparation of diff erent proanthocyanidins products from grape pomace.
基金supported by the National Natural Science Foundation of China(Nos.12172205,12072183,12102244,and 12472174)。
文摘This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs.
基金funded by the Key Program of the National Natural Science Foundation of China(U2341235)Youth Fund for Basic Research Program of Jiangnan University(JUSRP123003)+2 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1237)the National Key R&D Program of China(2018YFA0702800)Key Technologies R&D Program of CNBM(2023SJYL01).
文摘Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage.
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
文摘Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion mass spectrometry (MCs^+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com- positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.
文摘Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.
基金This study was co-supported by stable funding from the National Key Laboratory of Aerofoil and Grille Aerodynamics,China.
文摘Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.
基金Supported by National Department Public Benefit Research Foundation(201304701-4)Science and Technology Planning Program of Xinjiang Uygur Autonomous RegionXinjiang Uygur Autonomous Region Fruit Major Subjects~~
文摘ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
文摘The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.
基金supported by the Research Project of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ252.
文摘Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In view of the complex structure of the railway system,involving many subsystems,this paper analyzes the close dynamic coupling effect between railway subsystems.Based on this,taking the railway system failure as the top event,a fault tree is constructed in this paper.Then,a reliability allocation method based on the fault tree is employed to allocate the reliability index.Finally,a numerical experiment is implemented to show the performance of the reliability allocation method.Findings–The results showed that each subsystem needs to improve its reliability to meet the specified railway system reliability requirements,and the traction power supply system is the most important subsystem,which is the most efficient in improving the reliability of the railway system.Originality/value–For the first time,starting from a holistic perspective of the system,reliability allocation is carried out based on the importance of each railway subsystem.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3204303)the National Natural Science Foundation of China(Grant No.11934009)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.020414380195)the Foundation of State Key Laboratory of Ultrasound in Medicine and Engineering(Grant No.2022KFKT021)。
文摘Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,and the weak coupling effect under complex coiled structures also limits their applications.In this work,we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect.Meanwhile,the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption.The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378401,12202494)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.
文摘The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金supported by the National Natural Science Foundation of China(Nos.12372068 and 12202066)。
文摘In practical engineering applications,composite laminates frequently encounter complex multiple low-velocity impact events.The damage coupling caused by the different Angles Between Impact Positions(ABIP)is a key factor in reducing the load-bearing capacity of the laminates.It is worth noting that in real impact events,the delamination damage information of laminates is easier to capture directly.Therefore,it is crucial to predict the damage tolerance of laminates by analyzing their delamination damage images.This paper adopts an integrated finite element model to present an in-depth study on the damage characteristics and Compression-After-Impact(CAI)strength of carbon/glass hybrid laminates subjected to multiple low-velocity impacts at different ABIP.By leveraging the recognition capabilities of Convolutional Neural Networks(CNN)and taking into account the impact of noise,it aims to establish the implicit mapping relationship between delamination damage images and impact parameters,as well as CAI strength.This approach facilitates the inverse inversion of impact parameters for multiple low-velocity impacts of laminates under different ABIP,as well as effective prediction of CAI strength.
基金supported by the Defense Industrial Technology Development Program.
文摘Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on uniform-thickness shell designs and lack robust methodologies for generating high-resolution porous infill configurations.To address these challenges,a novel topology optimization framework for full-scale shell-filled composite structures is developed in this paper.First,a physics-driven,non-uniform partial differential equation(PDE)filter is developed,enabling precise control of variable-thickness shells by establishing explicit mapping relationships between shell thickness and filter radii.Second,this study addresses the convergence inefficiency of traditional full-scale topology optimization methods based on local volume constraints.It is revealed that a reduced influence radius exacerbates algorithm convergence challenges,thereby impeding the design of intricate porous structures.To overcome this bottleneck,a physics-driven stress skeleton generation method is developed.By integrating stress trajectories and rasterization processing,this method constructs an initial density field,effectively guiding material evolution and significantly enhancing convergence in porous structural optimization within the full-scale framework.Classical numerical examples demonstrate that our proposed optimization framework achieves biomimetic non-uniform shell thickness optimization and enables precise control of the shell thickness.Additionally,density preprocessing effectively eliminates intermediate density regions and void aggregation.Moreover,the generated trabecular-like infill patterns with spatially graded porosity,akin to multiscale topology optimization(MTO),provide an innovative solution for multifunctional,lightweight,complex shell-infill composite structures in aerospace and biomedical applications.
基金funded by the National Natural Science Foundation of China(Grant No.52276047)the Open Fund of NationalKey Laboratory of SpacecraftThermal Control(Grant No.NKLST-JJ-202401011)the Beijing Municipal Science&Technology Commission(Grant No.Z231100006123010).
文摘Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.