To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function i...To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented.A variety of constraint rules,including geology trend line,geology constraint line,geology trend surface,geology constraint surface and anisotropy,which can be converted into interpolation constraints,were developed to dynamically control the geology trends.Combined with the interactive tools of constraint rules,this method can avoid the shortcomings of the explicit modeling method based on the contour stitching,such as poor model quality,and is difficult to update dynamically,and simplify the modeling process of orebody.The results of numerical experiments show that the 3D ore body model can be reconstructed quickly,accurately and dynamically by the implicit modeling method.展开更多
The design and fabrication of advanced soft actuators with programmable actuation are highly desirable in constructing intelligent soft robots.In this work,a programmable light-driven liquid crystalline network(LCN)-b...The design and fabrication of advanced soft actuators with programmable actuation are highly desirable in constructing intelligent soft robots.In this work,a programmable light-driven liquid crystalline network(LCN)-based soft actuator was judiciously designed and prepared by constructing structural anisotropy across the thickness of the film.A three-dimensional(3D)deformable LCN actuator was realized by polymerization-induced phase separation of small-molarweight monomers and polymer networks.The resultant anisotropic LCN displays anisotropic microscale nanoporous architecture across the thickness in addition to uniform alignment at the molecular scale.The actuation behaviors of LCN film are tunable by adjusting the size and distribution of nanopores in LCN bulk via changing polymerization conditions and monomer components.More importantly,the nanoporous LCN film can be harnessed as a promising template to achieve diverse light responsiveness by changing the photothermal dyes via a feasible washing and refilling process,demonstrating a reprogrammable light-driven soft actuator.展开更多
The crystal structure,magnetization,and spontaneous magnetostriction of ferromagnetic Laves phase Gd Fe2 compound have been investigated.High resolution synchrotron x-ray diffraction(XRD) analysis shows that Gd Fe2 ...The crystal structure,magnetization,and spontaneous magnetostriction of ferromagnetic Laves phase Gd Fe2 compound have been investigated.High resolution synchrotron x-ray diffraction(XRD) analysis shows that Gd Fe2 has a lower cubic symmetry with easy magnetization direction(EMD) along [100] below Curie temperature TC.The replacement of Gd with a small amount of Tb changes the EMD to [111].The Curie temperature decreases while the field dependence of the saturation magnetization(Ms) measured in temperature range 5–300 K varies with increasing Tb concentration.Coercivity Hc increases with increasing Tb concentration and decays exponentially as temperature increases.The anisotropy in Gd Fe2 is so weak that some of the rare-earth substitution plays an important role in determining the easy direction of magnetization in GdFe_2.The calculated magnetostrictive constant λ100 shows a small value of 37×10^(-6).This value agrees well with experimental data 30×10^(-6).Under a relatively small magnetic field,GdFe_2 exhibits a V-shaped positive magnetostriction curve.When the field is further increased,the crystal exhibits a negative magnetostriction curve.This phenomenon has been discussed in term of magnetic domain switching.Furthermore,magnetostriction increases with increasing Tb concentration.Our work leads to a simple and unified mesoscopic explanation for magnetostriction in ferromagnets.It may also provide insight for developing novel functional materials.展开更多
The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the ...The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the Kunlun-West Qinling belt and the Sichuan Basin.Because of this expansion and interaction,this area suffers from intense deformation.At present,the evolution and deformation mechanisms of the northeastern Tibetan Plateau remain controversial.To provide new insights into these mechanisms,in this study,we conduct tomography of the P-wave velocity and radial anisotropy structures beneath the northeastern Tibetan Plateau.We choose a total of 667 teleseismic earthquakes from August 2006 to October 2020.Waveforms of these earthquakes were recorded by 921 broadband seismic stations in the northeastern Tibetan Plateau and surrounding areas.We first perform cross-correlation on waveforms of each station pair and obtain 770,749 P-wave traveltime differences.Then,we invert the differential traveltime data by applying eikonal equation-based teleseismic tomography.Finally,the P-wave velocity and radial anisotropy structures at depths from 30 to 800 km below the northeastern Tibetan Plateau are obtained.Our tomographic model shows clear low-velocity anomalies and positive radial anisotropy in the lower crust under the northeastern Qilian orogen,the northeastern Songpan-Ganzi belt and the western Qinling fold zone.These features are integrated to demonstrate the existence of lower crustal flow in the study area.Prominent low-velocity anomalies and positive radial anisotropy are found in the uppermost mantle beneath the Qilian orogen,the northeastern Songpan-Ganzi belt and western Qinling fold zone.These characteristics are combined to infer a weak lithosphere and horizontal asthenospheric flow under these tectonic units.Both the Ordos Block and the Sichuan Basin exhibit clear high-velocity anomalies and negative radial anisotropy in the uppermost mantle,thereby reflecting the high mechanical strength of the lithosphere beneath these blocks.High-velocity anomalies are also present in the upper mantle under the northern Chuandian block,potentially implying the northward subduction of the Indian plate.Furthermore,the front of the subducted Indian plate is imaged close to the Xianshuihe fault rather than the Kunlun fault.展开更多
The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient no...The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.展开更多
As a fundamental parameter of the optical crystals,birefringence plays a vital role in many optical applications,such as phase modulation,light splitting,and polarization,especially the phase matching process of the n...As a fundamental parameter of the optical crystals,birefringence plays a vital role in many optical applications,such as phase modulation,light splitting,and polarization,especially the phase matching process of the nonlinear optical crystals.The big birefringence not only benefits to the miniaturization of related devices,but also broadens the phase-matching wavelength range of nonlinear optical crystals.The design and synthesis of crystals with large birefringence becomes a hot research topic due to its more and more important applications in the optical modulation and laser technology fields.Herein,crystals with birefringence greater than 0.05 in the borate system are reviewed and classified according to different birefringent active groups,and the relationship between structure and properties is thoroughly explored.It is hoped that this review will provide a clear understanding of what kinds of building units and arrangements would have more opportunity to get adequate birefringence in borate systems and provide the statistical references to encourage the emergence of better crystal materials with large birefringence.展开更多
Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. ...Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. The systems at rest are jammed packings of frictionless disks with a nonzero yield stress. Driven by low shear rates, the flows shear thin due to the presence of the nonzero yield stress, but transit to shear thickening above a crossover shear rate γc - At γc, we observe the strongest struc- tural anisotropy in the pair distribution function, which serves as the structural signature of the shear thinning-thickening tran- sition. We also observe dynamical signatures associated with the transition: At γc , scaling behaviors of both the mean squared displacement and relaxation time undergo apparent changes. By performing a simple energy analysis, we reveal an underlying condition for the shear thickening to occur: d(lnTg)/d(Inγ) 〉 2 with Tg the kinetic temperature. This condition is confirmed by simulations.展开更多
Cell implantation offers an appealing avenue for heart repair after myocardial infarction(MI).Nevertheless,the implanted cells are subjected to the aberrant myocardial niche,which inhibits cell survival and maturation...Cell implantation offers an appealing avenue for heart repair after myocardial infarction(MI).Nevertheless,the implanted cells are subjected to the aberrant myocardial niche,which inhibits cell survival and maturation,posing significant challenges to the ultimate therapeutic outcome.The functional cardiac patches(CPs)have been proved to construct an elastic conductive,antioxidative,and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium.More importantly,inducing implanted cardiomyocytes(CMs)adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair.Herein,a functional Cig/(TA-Cu)CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid(TA)-chelated Cu2+(TA-Cu complex)via a green method.This CP possessed microstructural anisotropy,electrical conductivity and mechanical properties similar to natural myocardium,which could promote elongation,orientation,maturation,and functionalization of CMs.Besides,the Cig/(TA-Cu)CP could efficiently scavenge reactive oxygen species,reduce CM apoptosis,ultimately facilitating myocardial electrical integration,promoting vascular regeneration and improving cardiac function.Together,our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.展开更多
文摘To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented.A variety of constraint rules,including geology trend line,geology constraint line,geology trend surface,geology constraint surface and anisotropy,which can be converted into interpolation constraints,were developed to dynamically control the geology trends.Combined with the interactive tools of constraint rules,this method can avoid the shortcomings of the explicit modeling method based on the contour stitching,such as poor model quality,and is difficult to update dynamically,and simplify the modeling process of orebody.The results of numerical experiments show that the 3D ore body model can be reconstructed quickly,accurately and dynamically by the implicit modeling method.
基金supported by the National Natural Science Foundation of China(Grant No.52202081)Natural Science Foundation of Jiangxi Province(Grant No.20232BAB204030).
文摘The design and fabrication of advanced soft actuators with programmable actuation are highly desirable in constructing intelligent soft robots.In this work,a programmable light-driven liquid crystalline network(LCN)-based soft actuator was judiciously designed and prepared by constructing structural anisotropy across the thickness of the film.A three-dimensional(3D)deformable LCN actuator was realized by polymerization-induced phase separation of small-molarweight monomers and polymer networks.The resultant anisotropic LCN displays anisotropic microscale nanoporous architecture across the thickness in addition to uniform alignment at the molecular scale.The actuation behaviors of LCN film are tunable by adjusting the size and distribution of nanopores in LCN bulk via changing polymerization conditions and monomer components.More importantly,the nanoporous LCN film can be harnessed as a promising template to achieve diverse light responsiveness by changing the photothermal dyes via a feasible washing and refilling process,demonstrating a reprogrammable light-driven soft actuator.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB619401)
文摘The crystal structure,magnetization,and spontaneous magnetostriction of ferromagnetic Laves phase Gd Fe2 compound have been investigated.High resolution synchrotron x-ray diffraction(XRD) analysis shows that Gd Fe2 has a lower cubic symmetry with easy magnetization direction(EMD) along [100] below Curie temperature TC.The replacement of Gd with a small amount of Tb changes the EMD to [111].The Curie temperature decreases while the field dependence of the saturation magnetization(Ms) measured in temperature range 5–300 K varies with increasing Tb concentration.Coercivity Hc increases with increasing Tb concentration and decays exponentially as temperature increases.The anisotropy in Gd Fe2 is so weak that some of the rare-earth substitution plays an important role in determining the easy direction of magnetization in GdFe_2.The calculated magnetostrictive constant λ100 shows a small value of 37×10^(-6).This value agrees well with experimental data 30×10^(-6).Under a relatively small magnetic field,GdFe_2 exhibits a V-shaped positive magnetostriction curve.When the field is further increased,the crystal exhibits a negative magnetostriction curve.This phenomenon has been discussed in term of magnetic domain switching.Furthermore,magnetostriction increases with increasing Tb concentration.Our work leads to a simple and unified mesoscopic explanation for magnetostriction in ferromagnets.It may also provide insight for developing novel functional materials.
基金supported by the National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No. ZDJ2019-18)supported by the National Natural Science Foundation of China (Grant No. U1839206)+2 种基金supported by the Open Fund Project of the State Key Laboratory of Lithospheric Evolution (Grant No. SKL-K202101)the National Natural Science Foundation of China (Grant Nos. 42174111 and 42064004)Institute of Geophysics, China Earthquake Administration (Grant Nos. DQJB16A03, DQJB17A01)
文摘The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the Kunlun-West Qinling belt and the Sichuan Basin.Because of this expansion and interaction,this area suffers from intense deformation.At present,the evolution and deformation mechanisms of the northeastern Tibetan Plateau remain controversial.To provide new insights into these mechanisms,in this study,we conduct tomography of the P-wave velocity and radial anisotropy structures beneath the northeastern Tibetan Plateau.We choose a total of 667 teleseismic earthquakes from August 2006 to October 2020.Waveforms of these earthquakes were recorded by 921 broadband seismic stations in the northeastern Tibetan Plateau and surrounding areas.We first perform cross-correlation on waveforms of each station pair and obtain 770,749 P-wave traveltime differences.Then,we invert the differential traveltime data by applying eikonal equation-based teleseismic tomography.Finally,the P-wave velocity and radial anisotropy structures at depths from 30 to 800 km below the northeastern Tibetan Plateau are obtained.Our tomographic model shows clear low-velocity anomalies and positive radial anisotropy in the lower crust under the northeastern Qilian orogen,the northeastern Songpan-Ganzi belt and the western Qinling fold zone.These features are integrated to demonstrate the existence of lower crustal flow in the study area.Prominent low-velocity anomalies and positive radial anisotropy are found in the uppermost mantle beneath the Qilian orogen,the northeastern Songpan-Ganzi belt and western Qinling fold zone.These characteristics are combined to infer a weak lithosphere and horizontal asthenospheric flow under these tectonic units.Both the Ordos Block and the Sichuan Basin exhibit clear high-velocity anomalies and negative radial anisotropy in the uppermost mantle,thereby reflecting the high mechanical strength of the lithosphere beneath these blocks.High-velocity anomalies are also present in the upper mantle under the northern Chuandian block,potentially implying the northward subduction of the Indian plate.Furthermore,the front of the subducted Indian plate is imaged close to the Xianshuihe fault rather than the Kunlun fault.
基金supported by the National Natural Science Foundation of China(Grant Nos.41225016,91414301&41688103)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB03010802)
文摘The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.
基金supported by Shanghai Cooperation Organization Science and Technology Partnership Program(2020E01039)the Scientific Instrument Developing Project,CAS(YJKYYQ20210033)+3 种基金CAS Youth Interdisciplinary Team(JCTD-2021–18)the West Light Foundation of CAS(2021-XBQNXZ-004)the Outstanding Youth Science Fund Project of Natural Science Foundation of Xinjiang(2022D01E90)Key Training Object of Talent Project of Urumqi。
文摘As a fundamental parameter of the optical crystals,birefringence plays a vital role in many optical applications,such as phase modulation,light splitting,and polarization,especially the phase matching process of the nonlinear optical crystals.The big birefringence not only benefits to the miniaturization of related devices,but also broadens the phase-matching wavelength range of nonlinear optical crystals.The design and synthesis of crystals with large birefringence becomes a hot research topic due to its more and more important applications in the optical modulation and laser technology fields.Herein,crystals with birefringence greater than 0.05 in the borate system are reviewed and classified according to different birefringent active groups,and the relationship between structure and properties is thoroughly explored.It is hoped that this review will provide a clear understanding of what kinds of building units and arrangements would have more opportunity to get adequate birefringence in borate systems and provide the statistical references to encourage the emergence of better crystal materials with large birefringence.
基金supported by the National Natural Science Foundation of China(21325418,11074228)the National Basic Research Program of China(2012CB821500)+1 种基金the CAS 100-Talent Program(2030020004)the Fundamental Research Funds for the Central Universities(2340000034,2340000060,2030020023)
文摘Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. The systems at rest are jammed packings of frictionless disks with a nonzero yield stress. Driven by low shear rates, the flows shear thin due to the presence of the nonzero yield stress, but transit to shear thickening above a crossover shear rate γc - At γc, we observe the strongest struc- tural anisotropy in the pair distribution function, which serves as the structural signature of the shear thinning-thickening tran- sition. We also observe dynamical signatures associated with the transition: At γc , scaling behaviors of both the mean squared displacement and relaxation time undergo apparent changes. By performing a simple energy analysis, we reveal an underlying condition for the shear thickening to occur: d(lnTg)/d(Inγ) 〉 2 with Tg the kinetic temperature. This condition is confirmed by simulations.
基金supported by the National Natural Science Foundation of China(Grant No.32071355,U21A20173,32071363,32201083)the National Key R&D program of China(2023YFC2412803,2022YFC2402801)+3 种基金Science and Technology Planning Project of Guangdong Province(2022A1515011888)the Marine Economy Development Project of Department of Natural Resources of Guangdong Province(No.GDNRC[2022]039)China Postdoctoral Fund Program(No.2021M701599)Shenzhen Fundamental Research Key Project(JCYJ20200109150641992).
文摘Cell implantation offers an appealing avenue for heart repair after myocardial infarction(MI).Nevertheless,the implanted cells are subjected to the aberrant myocardial niche,which inhibits cell survival and maturation,posing significant challenges to the ultimate therapeutic outcome.The functional cardiac patches(CPs)have been proved to construct an elastic conductive,antioxidative,and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium.More importantly,inducing implanted cardiomyocytes(CMs)adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair.Herein,a functional Cig/(TA-Cu)CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid(TA)-chelated Cu2+(TA-Cu complex)via a green method.This CP possessed microstructural anisotropy,electrical conductivity and mechanical properties similar to natural myocardium,which could promote elongation,orientation,maturation,and functionalization of CMs.Besides,the Cig/(TA-Cu)CP could efficiently scavenge reactive oxygen species,reduce CM apoptosis,ultimately facilitating myocardial electrical integration,promoting vascular regeneration and improving cardiac function.Together,our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.