Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequ...Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.展开更多
Bimetallic nanoparticles exhibit a synergistic effect that critically depends on their surface composition,but such promotion mechanisms become vague with varying surface compositions.Here,alumina supported Ag@Pd core...Bimetallic nanoparticles exhibit a synergistic effect that critically depends on their surface composition,but such promotion mechanisms become vague with varying surface compositions.Here,alumina supported Ag@Pd core–shell and PdAg alloy structure with controlled size and surface compositions were prepared to demonstrate synergetic mechanisms,particularly,ligand and strain effects on activity and ethylene selectivity for acetylene hydrogenation.The performance evaluation indicates that Ag@Pd catalysts with well-controlled Pd-shell thickness can effectively lower apparent activation energy and improve ethylene selectivity.Hydrogenation activity increases from 0.019 to 0.062 s^(-1) with decreasing Pd-shell thickness under mild conditions,which is 3–6 times higher than their alloyed and monometallic counterparts.Combined characterizations and density functional theory are conducted to reveal such shell-thickness-dependent performance.The ligand effect arising from Ag alloying in the interface of Ag@Pd2ML observes the strongest binding of acetylene,but it diminished sharply and the strain effect gets more prevailing with increasing shell thickness.The competition of ethylene desorption and deephydrogenation were also investigated to understand the selectivity governing factors,and the selectivity descriptor(0.5BE(C_(2)H_(4))–BE(H))was built to match the contribution of ligand and strain effect on the different surfaces of Pd-Ag bimetallic NPs.The exploration of synergetic mechanisms among bimetallic NPs with varied structure and surface compositions in this work can help us to deepen the understanding catalyst structure–activity relationship and provide a feasible way to optimize the overall catalytic performance.展开更多
The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped i...The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe_(1-x)Co_(x))_(2)As_(2),suggesting a strong interplay between nematicity and superconductivity.Since the long-range spin order is absent in FeSe superconductor,whether a similar strain effect could be also observed or not is an interesting question.Here,by utilizing a flexible film as substrate,we successfully achieve a wide-range-strain tuning of FeSe thin flake,in which both the tensile and compressive strain could reach up to~0.7%,and systematically study the strain effect on both superconducting and nematic transition(T_(c)and Ts)in the FeSe thin flake.Our results reveal a predominant A1g-type strain effect on T_(c).Meanwhile,Ts exhibits a monotonic anti-correlation with T_(c)and the maximum T_(c)reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe_(1-x)Co_(x))_(2)As_(2),the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity.In addition,our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.展开更多
Dilithium ethylene dicarbonate(Li_(2)EDC) and dilithium butylene dicarbonate(Li_(2)BDC) are the common organic compositions of the solid electrolyte interphase(SEI) layers in rechargeable lithium-ion batteries.The Li^...Dilithium ethylene dicarbonate(Li_(2)EDC) and dilithium butylene dicarbonate(Li_(2)BDC) are the common organic compositions of the solid electrolyte interphase(SEI) layers in rechargeable lithium-ion batteries.The Li^(+) diffusion in the amorphous and ordered phases of Li_(2) EDC and Li_(2) BDC under various strains has been investigated by using molecular dynamics simulations.It is found that different strains lead to diverse changes in Li^(+) diffusivity.The tensile strain makes the Li+diffusion coefficients increase in amorphous and ordered Li_(2)EDC or Li_(2) BDC,and the compressive strain makes the Li+diffusion coefficients decrease in them.The average Li+coordination number calculation,ion conductivity calculation and the calculation of the residence autocorrelation function in amorphous and ordered Li_(2)EDC or Li_(2)BDC are performed to further analyze the strain effects on Li^(+) transport in them.The factors influencing Li^(+) diffusion in amorphous and ordered Li_(2)EDC or Li_(2) BDC under the strain are discussed.展开更多
The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effec...The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.展开更多
The strain impact on hole mobility in the GOI tri-gate pFETs is investigated by simulating the strained Ge with quantum confinement from band structure to electro-static distribution as well as the effective mobility....The strain impact on hole mobility in the GOI tri-gate pFETs is investigated by simulating the strained Ge with quantum confinement from band structure to electro-static distribution as well as the effective mobility. Lattice mismatch strain induced by HfO2 warps and reshapes the valence subbands, and reduces the hole effective masses. The maximum value of hole density is observed near the top comers of the channel. The hole density is decreased by the lattice mismatch strain. The phonon scattering rate is degraded by strain, which results in higher hole mobility.展开更多
The electronic and crystal structures of catalysts are crucial for designing novel oxygen reduction reactions(ORR)catalysts.In recent years,heterojunction catalysts have occupied a very important position in emerging ...The electronic and crystal structures of catalysts are crucial for designing novel oxygen reduction reactions(ORR)catalysts.In recent years,heterojunction catalysts have occupied a very important position in emerging catalysts.In heterojunction catalysts,the generation of lattice strain at the heterophase boundary can affect the catalytic properties.In this article,we regulate the strain effects by modulating the proportion of LaMnO_(3)and Mn_(3)O_(4),and it was revealed that there is a facilitating relationship between the 4e-ORR process and tensile strain,while compressive strain plays the opposite role.This is attributed to the stretched bond length reducing the covalency of the Mn-O bond,promoting the consumption of OOH^(*)intermediates and enhancing the reversible stability of the structure.In situ attenuated total reflection infrared(ATR-IR)measurements were applied to investigate the mechanism for the consumption of intermediate,confirming the strain effects of heterojunction is a key factor in influencing the catalytic performance.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strai...Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.展开更多
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all...The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.展开更多
The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain ra...The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain rate and temperature.During high-temperature deformation,the plastic deformation modes involve dynamic recrystallization(DRX)and dynamic recovery(DRV)processes,which govern the mechanical behaviors of CLAM steel under different loading conditions.This work systematically explored the effects of increasing strain rates and temperatures,finding that the microstructure evolution process is facilitated by nano-sized M_(23)C_(6)precipitates and the grain boundaries of the initial microstructure.Under quasi-static loading conditions,DRX grains preferentially nucleate around M_(23)C_(6) precipitates,and the dominant deformation mechanism is DRX.However,under dynamic loading conditions,the number of DRX grains decreases significantly,and the dominant deformation mechanism converts to DRV.It was concluded that the coupling effects of strain rates and temperatures strongly influence DRX and DRV processes,which ultimately determine the mechanical properties and microstructure evolution.Moreover,dynamic deformation at elevated temperatures achieves much finer grain sizes,offering a novel method for grain refinement through dynamic straining processes.展开更多
With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Zeng Jie(曾杰)and Prof.Yang Jinlong(杨金龙),both from Hefei National Laboratory for Physica...With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Zeng Jie(曾杰)and Prof.Yang Jinlong(杨金龙),both from Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
The effect of strain on charge density wave(CDW)order inα-U is investigated within the framework of relativistic density-functional theory.The energetical stability ofα-U with CDW distortion is enhanced by the tensi...The effect of strain on charge density wave(CDW)order inα-U is investigated within the framework of relativistic density-functional theory.The energetical stability ofα-U with CDW distortion is enhanced by the tensile strain along a and b axes,which is similar to the case of negative pressure and normal.However,the tensile strain along c axis suppresses the energetical stability of CDW phase.This abnormal effect could be understood from the emergence of a new onedimensional atomic chain along c axis inα-U.Furthermore,this effect is supported by the calculations of Fermi surface and phonon mode,in which the topological objects and the dynamical instability show opposite behaviors between strains along a/b and c axes.展开更多
First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer.The calculation focuses on the specific capacity,intercalation potential,elec...First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer.The calculation focuses on the specific capacity,intercalation potential,electronic structure,and migration behavior of Li-ion under various strains by using the climbing-image nudged elastic band method.The result shows that the specific capacity is nearly unchanged under strain.But interestingly,the tensile strain can cause the intercalation potential and Li-ion migration energy barrier increase in MoSSe monolayer,whereas the compressive strain can lead to the intercalation potential and energy barrier decreasing.Thus,the rate performance of the MoSSe anode is improved.By analyzing the potential energy surface of MoSSe surface and equilibrium adsorption distance of Li-ion,we explain the physical origin of the change in the intercalation potential and migration energy barrier.The increase of MoSSe potential energy surface and the decrease of adsorption distance caused by tensile strain are the main reason that hinders Li-ion migration.展开更多
The impact of the lattice strain on the charge/orbital ordering state was studied by using a heterostructure composed with elec- tron-doped La0.9Hf0.1MnO3 (LHMO) and ferro- and piezoelectric 0.67Pb(Mgl/3Nb2/3)O3-0...The impact of the lattice strain on the charge/orbital ordering state was studied by using a heterostructure composed with elec- tron-doped La0.9Hf0.1MnO3 (LHMO) and ferro- and piezoelectric 0.67Pb(Mgl/3Nb2/3)O3-0.33PbTiO3. The ferroelectric poling induces a significant reduction in the biaxial tensile strain in the LHMO film, leading to a decrease in the film resistance over the whole temperature range and an increase in the insulator to metal transition temperature TIM. The resistance of LHMO film exhibits different responses to the external electric fields and lattice deformation, which is attributed to the coactions of con- verse piezoelectric effect and ferroelectric polarity effect. The modification of charge/orbital ordering phase by the electric fields and ferroelectric polarization suggests that the unstable states in the manganites are sensitive to strain effects.展开更多
The slow conversion of polyphase in lithium-sulfur(Li-S)batteries not only intensifies the shuttle effect of lithium polysulfides(LiPSs),but also causes the continuous accumulation of inactive sulfur species,resulting...The slow conversion of polyphase in lithium-sulfur(Li-S)batteries not only intensifies the shuttle effect of lithium polysulfides(LiPSs),but also causes the continuous accumulation of inactive sulfur species,resulting in rapid capacity attenuation and sluggish dynamic performance.Herein,the promoting effect of atomic interface stress on sulfur reaction was investigated via CoFe-CoFe_(2)O_(4)heterogeneous nanosheets with a cavity structure.The strain force induced by the in-situ precipitation of Co Fe bimetallic alloy in oxide matrix increased the d-band center,which was conducive to the interaction between catalyst and Li PSs.The sulfur cathode based on this two-dimensional(2D)nanosheet design showed an extremely high capacity of 751 mAh g^(-1)at 4 C.Even with a sulfur loading of 5.55 mg cm^(-2),its area capacity was still as high as 7.15 mAh cm^(-2).Meanwhile,the enhanced stability greatly improved the practical potential of Li-S batteries.展开更多
Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conv...Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conversion efficiency is not a core issue affecting the application of perovskite solar cells in special scenarios.At present, stability is the major technical encounters that hinders its further commercial development. Microstrain in PSCs is currently a significant factor responsible for the device's instability. Strain-induced ion migration is widely believed to accelerate perovskite degradation even when external stimuli are excluded.Undoubtedly, it is imperative to study strain to enhance the stability of PSCs. This paper reviews recent developments to understand strain's origin and effect mechanisms on performance of PSCs, including ion migration,failure behavior, defect formation, and its effect on photoelectric properties, stability, and reliability.Additionally, several well-known strain management strategies are systematically introduced based on the strain effect mechanism and strain engineering on the film, providing more clues for further preparation with increased stability. The manipulation of external physical strain applied from films to entire devices has been extensively studied. Furthermore, recommendations for future research directions and chemical approaches have been provided. It is emphasized that strain engineering plays a crucial role in improving the efficiency and longevity of PSCs. Tensile strain causes rapid degradation, while moderate compressive strain and external strain control could improve properties and stability. Efforts should focus on controlling compressive strain to mitigate residual tensile strain and introducing it in a controlled manner. Future research endeavors may focus on exploring these pathways to improve the efficiency and lifespan of PSCs.展开更多
Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically ex...Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.展开更多
基金Sponsored by the National Natural Science of China(10472014)
文摘Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.
基金supported by National Key Research&Development Program of China (2022YFA1506200)the National Natural Science Foundations of China (22078007, 21627813, 21706009,22002085)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2020A1515110832)the Fundamental Research Funds for the Central Universities (buctrc201921, JD2223)Innovative Achievement Commercialization Service-Platform of Industrial CatalysisChemistry and Chemical Engineering Guangdong Laboratory for a startup funding support(2111001)
文摘Bimetallic nanoparticles exhibit a synergistic effect that critically depends on their surface composition,but such promotion mechanisms become vague with varying surface compositions.Here,alumina supported Ag@Pd core–shell and PdAg alloy structure with controlled size and surface compositions were prepared to demonstrate synergetic mechanisms,particularly,ligand and strain effects on activity and ethylene selectivity for acetylene hydrogenation.The performance evaluation indicates that Ag@Pd catalysts with well-controlled Pd-shell thickness can effectively lower apparent activation energy and improve ethylene selectivity.Hydrogenation activity increases from 0.019 to 0.062 s^(-1) with decreasing Pd-shell thickness under mild conditions,which is 3–6 times higher than their alloyed and monometallic counterparts.Combined characterizations and density functional theory are conducted to reveal such shell-thickness-dependent performance.The ligand effect arising from Ag alloying in the interface of Ag@Pd2ML observes the strongest binding of acetylene,but it diminished sharply and the strain effect gets more prevailing with increasing shell thickness.The competition of ethylene desorption and deephydrogenation were also investigated to understand the selectivity governing factors,and the selectivity descriptor(0.5BE(C_(2)H_(4))–BE(H))was built to match the contribution of ligand and strain effect on the different surfaces of Pd-Ag bimetallic NPs.The exploration of synergetic mechanisms among bimetallic NPs with varied structure and surface compositions in this work can help us to deepen the understanding catalyst structure–activity relationship and provide a feasible way to optimize the overall catalytic performance.
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFA0303000 and 2016YFA0300201)the National Natural Science Foundation of China(Grant No.11888101)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY160000).
文摘The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe_(1-x)Co_(x))_(2)As_(2),suggesting a strong interplay between nematicity and superconductivity.Since the long-range spin order is absent in FeSe superconductor,whether a similar strain effect could be also observed or not is an interesting question.Here,by utilizing a flexible film as substrate,we successfully achieve a wide-range-strain tuning of FeSe thin flake,in which both the tensile and compressive strain could reach up to~0.7%,and systematically study the strain effect on both superconducting and nematic transition(T_(c)and Ts)in the FeSe thin flake.Our results reveal a predominant A1g-type strain effect on T_(c).Meanwhile,Ts exhibits a monotonic anti-correlation with T_(c)and the maximum T_(c)reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe_(1-x)Co_(x))_(2)As_(2),the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity.In addition,our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.
基金supported by Shanghai Supercomputer CenterProject supported by the National Natural Science Foundation of China (Grant No. 11872236)。
文摘Dilithium ethylene dicarbonate(Li_(2)EDC) and dilithium butylene dicarbonate(Li_(2)BDC) are the common organic compositions of the solid electrolyte interphase(SEI) layers in rechargeable lithium-ion batteries.The Li^(+) diffusion in the amorphous and ordered phases of Li_(2) EDC and Li_(2) BDC under various strains has been investigated by using molecular dynamics simulations.It is found that different strains lead to diverse changes in Li^(+) diffusivity.The tensile strain makes the Li+diffusion coefficients increase in amorphous and ordered Li_(2)EDC or Li_(2) BDC,and the compressive strain makes the Li+diffusion coefficients decrease in them.The average Li+coordination number calculation,ion conductivity calculation and the calculation of the residence autocorrelation function in amorphous and ordered Li_(2)EDC or Li_(2)BDC are performed to further analyze the strain effects on Li^(+) transport in them.The factors influencing Li^(+) diffusion in amorphous and ordered Li_(2)EDC or Li_(2) BDC under the strain are discussed.
基金supported by the National Natural Science Foundation of China(21972170,22072184)the Fund for Academic Innovation Teams of South-Central Minzu University(XTZ24013)
文摘The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.
文摘The strain impact on hole mobility in the GOI tri-gate pFETs is investigated by simulating the strained Ge with quantum confinement from band structure to electro-static distribution as well as the effective mobility. Lattice mismatch strain induced by HfO2 warps and reshapes the valence subbands, and reduces the hole effective masses. The maximum value of hole density is observed near the top comers of the channel. The hole density is decreased by the lattice mismatch strain. The phonon scattering rate is degraded by strain, which results in higher hole mobility.
基金supported by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(22425105,22221001,22271124,22471103,22201111)+3 种基金the 111 Project(B20027)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2023QNRC001)support from the Science and Technology Major Plan of Gansu Province(24ZD13GA015,23ZDGA012,23ZDKA014)the Natural Science Foundation Key Project of Gansu Province(24JRRA394)。
文摘The electronic and crystal structures of catalysts are crucial for designing novel oxygen reduction reactions(ORR)catalysts.In recent years,heterojunction catalysts have occupied a very important position in emerging catalysts.In heterojunction catalysts,the generation of lattice strain at the heterophase boundary can affect the catalytic properties.In this article,we regulate the strain effects by modulating the proportion of LaMnO_(3)and Mn_(3)O_(4),and it was revealed that there is a facilitating relationship between the 4e-ORR process and tensile strain,while compressive strain plays the opposite role.This is attributed to the stretched bond length reducing the covalency of the Mn-O bond,promoting the consumption of OOH^(*)intermediates and enhancing the reversible stability of the structure.In situ attenuated total reflection infrared(ATR-IR)measurements were applied to investigate the mechanism for the consumption of intermediate,confirming the strain effects of heterojunction is a key factor in influencing the catalytic performance.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
基金financed by the Key Technology R&D Plan of Yunnan Provincial Department of Science and Technology(Grant No.202303AA080003)the Shanghai Rising-Star Program(Grant No.23QB1404800).
文摘Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.
基金Project supported by the National Natural Science Foundation of China(Nos.11922206,11702089,12272132)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20240388)。
文摘The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.
基金financially supported by National Natural Science Foundation of China(Grant Nos.12025205 and 12141203)Natural Science Basic Research Program of Shaanxi(Program No.S2023-JC-QN-0614)Fund for Basic Research(No.2021T019)from the Analytical&Testing Center of Northwestern Polytechnical University.
文摘The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain rate and temperature.During high-temperature deformation,the plastic deformation modes involve dynamic recrystallization(DRX)and dynamic recovery(DRV)processes,which govern the mechanical behaviors of CLAM steel under different loading conditions.This work systematically explored the effects of increasing strain rates and temperatures,finding that the microstructure evolution process is facilitated by nano-sized M_(23)C_(6)precipitates and the grain boundaries of the initial microstructure.Under quasi-static loading conditions,DRX grains preferentially nucleate around M_(23)C_(6) precipitates,and the dominant deformation mechanism is DRX.However,under dynamic loading conditions,the number of DRX grains decreases significantly,and the dominant deformation mechanism converts to DRV.It was concluded that the coupling effects of strain rates and temperatures strongly influence DRX and DRV processes,which ultimately determine the mechanical properties and microstructure evolution.Moreover,dynamic deformation at elevated temperatures achieves much finer grain sizes,offering a novel method for grain refinement through dynamic straining processes.
文摘With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Zeng Jie(曾杰)and Prof.Yang Jinlong(杨金龙),both from Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.22176181,11874306,and 12174320)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory(Grant No.WDZC202101)the Natural Science Foundation of Chongqing,China(Grant No.cstc2021jcyj-msxmX0209)。
文摘The effect of strain on charge density wave(CDW)order inα-U is investigated within the framework of relativistic density-functional theory.The energetical stability ofα-U with CDW distortion is enhanced by the tensile strain along a and b axes,which is similar to the case of negative pressure and normal.However,the tensile strain along c axis suppresses the energetical stability of CDW phase.This abnormal effect could be understood from the emergence of a new onedimensional atomic chain along c axis inα-U.Furthermore,this effect is supported by the calculations of Fermi surface and phonon mode,in which the topological objects and the dynamical instability show opposite behaviors between strains along a/b and c axes.
基金Project supported by the Education Department of Jiangxi Province,China(Grant No.GJJ160337)。
文摘First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer.The calculation focuses on the specific capacity,intercalation potential,electronic structure,and migration behavior of Li-ion under various strains by using the climbing-image nudged elastic band method.The result shows that the specific capacity is nearly unchanged under strain.But interestingly,the tensile strain can cause the intercalation potential and Li-ion migration energy barrier increase in MoSSe monolayer,whereas the compressive strain can lead to the intercalation potential and energy barrier decreasing.Thus,the rate performance of the MoSSe anode is improved.By analyzing the potential energy surface of MoSSe surface and equilibrium adsorption distance of Li-ion,we explain the physical origin of the change in the intercalation potential and migration energy barrier.The increase of MoSSe potential energy surface and the decrease of adsorption distance caused by tensile strain are the main reason that hinders Li-ion migration.
基金supported by the Research Grant Council of Hong Kong(Grant No. HKU 702409P)the Seed Funding by the University of Hong Kong
文摘The impact of the lattice strain on the charge/orbital ordering state was studied by using a heterostructure composed with elec- tron-doped La0.9Hf0.1MnO3 (LHMO) and ferro- and piezoelectric 0.67Pb(Mgl/3Nb2/3)O3-0.33PbTiO3. The ferroelectric poling induces a significant reduction in the biaxial tensile strain in the LHMO film, leading to a decrease in the film resistance over the whole temperature range and an increase in the insulator to metal transition temperature TIM. The resistance of LHMO film exhibits different responses to the external electric fields and lattice deformation, which is attributed to the coactions of con- verse piezoelectric effect and ferroelectric polarity effect. The modification of charge/orbital ordering phase by the electric fields and ferroelectric polarization suggests that the unstable states in the manganites are sensitive to strain effects.
基金the National Natural Science Foundation of China(No.52207227)the Fundamental Research Funds for the Central Universities(No.0213-14380196)+1 种基金the Science and Technology Project of Nanchang(No.2017-SJSYS-008)the Anhui Absorption Spectroscopy Analysis Instrument Co,Ltd.for XAFS measurements and analysis。
文摘The slow conversion of polyphase in lithium-sulfur(Li-S)batteries not only intensifies the shuttle effect of lithium polysulfides(LiPSs),but also causes the continuous accumulation of inactive sulfur species,resulting in rapid capacity attenuation and sluggish dynamic performance.Herein,the promoting effect of atomic interface stress on sulfur reaction was investigated via CoFe-CoFe_(2)O_(4)heterogeneous nanosheets with a cavity structure.The strain force induced by the in-situ precipitation of Co Fe bimetallic alloy in oxide matrix increased the d-band center,which was conducive to the interaction between catalyst and Li PSs.The sulfur cathode based on this two-dimensional(2D)nanosheet design showed an extremely high capacity of 751 mAh g^(-1)at 4 C.Even with a sulfur loading of 5.55 mg cm^(-2),its area capacity was still as high as 7.15 mAh cm^(-2).Meanwhile,the enhanced stability greatly improved the practical potential of Li-S batteries.
基金Project of National Natural Science Foundation (52262035)Key Research Program of Education Department of Gansu Province (GSSYLXM-03)+2 种基金Hong Liu excellent youth project of Lanzhou University of technologyMajor Science and Technology Project of Gansu Province(22ZD6GA008)Jin chang Technology Program(2022GY003)。
文摘Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conversion efficiency is not a core issue affecting the application of perovskite solar cells in special scenarios.At present, stability is the major technical encounters that hinders its further commercial development. Microstrain in PSCs is currently a significant factor responsible for the device's instability. Strain-induced ion migration is widely believed to accelerate perovskite degradation even when external stimuli are excluded.Undoubtedly, it is imperative to study strain to enhance the stability of PSCs. This paper reviews recent developments to understand strain's origin and effect mechanisms on performance of PSCs, including ion migration,failure behavior, defect formation, and its effect on photoelectric properties, stability, and reliability.Additionally, several well-known strain management strategies are systematically introduced based on the strain effect mechanism and strain engineering on the film, providing more clues for further preparation with increased stability. The manipulation of external physical strain applied from films to entire devices has been extensively studied. Furthermore, recommendations for future research directions and chemical approaches have been provided. It is emphasized that strain engineering plays a crucial role in improving the efficiency and longevity of PSCs. Tensile strain causes rapid degradation, while moderate compressive strain and external strain control could improve properties and stability. Efforts should focus on controlling compressive strain to mitigate residual tensile strain and introducing it in a controlled manner. Future research endeavors may focus on exploring these pathways to improve the efficiency and lifespan of PSCs.
基金supported by the National Natural Science Foundation of China(Grant No.62488201)the National Key Research and Development Project of China(Grant No.2022YFA1204100)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700).
文摘Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.