This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod...This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.展开更多
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d...The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.展开更多
To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of c...To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.展开更多
This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used t...This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used to control linear and angular velocities on the midpoint of the front frame. The novel controller based on the error dynamics model is eventually realized to track the path high-precisely with constant speed. The results of simulation and experiment show that the LQR-GA controller has a better tracking performance than the existing methods under a low speed of 3 m/s. In this paper, kinematics model and simulation control models based on co-simulation of ADAMS and Matlab/Simulink are established to verify the proposed strategy. In addition, a real vehicle experiment is designed to further more correctness of the conclusion. With the proposed controller and considering the steering model in the simulation, the control performance is improved and matches the actual situation better. The research results contribute to the development of automation of ADT.展开更多
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa...In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.展开更多
Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study propose...Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls.展开更多
The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo searc...The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.展开更多
Trial and error method can be used to find a suitable design of a fuzzy controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performanc...Trial and error method can be used to find a suitable design of a fuzzy controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimiza-tion algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the Bacterial Foraging Optimization algorithm (BFO) to design a fuzzy controller for tracking control of a robot manipulator driven by permanent magnet DC motors. We use efficiently the BFO algorithm to form the rule base and MFs. The BFO algorithm is compared with a Particle Swarm Optimization algorithm (PSO). Performance of the controller in the joint space and in the Cartesian space is evaluated. Simulation results show superiority of the BFO algorithm to the PSO algorithm.展开更多
In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order prop...In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.展开更多
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mob...Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.展开更多
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ...The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.展开更多
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金supported by the 2022 Sanya Science and Technology Innovation Project,China(No.2022KJCX03)the Sanya Science and Education Innovation Park,Wuhan University of Technology,China(Grant No.2022KF0028)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.2021JJLH0036).
文摘This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.
文摘To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.
基金the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-15-023A1)the National Key R&D Program Project(Nos.2016YFC0802905 and 2018YFC0604403)
文摘This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used to control linear and angular velocities on the midpoint of the front frame. The novel controller based on the error dynamics model is eventually realized to track the path high-precisely with constant speed. The results of simulation and experiment show that the LQR-GA controller has a better tracking performance than the existing methods under a low speed of 3 m/s. In this paper, kinematics model and simulation control models based on co-simulation of ADAMS and Matlab/Simulink are established to verify the proposed strategy. In addition, a real vehicle experiment is designed to further more correctness of the conclusion. With the proposed controller and considering the steering model in the simulation, the control performance is improved and matches the actual situation better. The research results contribute to the development of automation of ADT.
基金supported in part by the National Natural ScienceFoundation of China (U2013201)the National Science Fund for Distinguished Young Scholars (61825302)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX20_0208)。
文摘In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.
基金the Natural Science Foundation of Guangxi(No.2020GXNSFDA238011)the Open Fund Project of Guangxi Key Laboratory of Automation Detection Technology and Instrument(No.YQ21203)the Independent Research Project of Guangxi Key Laboratory of Auto Parts and Vehicle Technology(No.2020GKLACVTZZ02)。
文摘Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls.
基金supported by the National Natural Science Foundation of China(61273083 and 61374012)
文摘The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.
文摘Trial and error method can be used to find a suitable design of a fuzzy controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimiza-tion algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the Bacterial Foraging Optimization algorithm (BFO) to design a fuzzy controller for tracking control of a robot manipulator driven by permanent magnet DC motors. We use efficiently the BFO algorithm to form the rule base and MFs. The BFO algorithm is compared with a Particle Swarm Optimization algorithm (PSO). Performance of the controller in the joint space and in the Cartesian space is evaluated. Simulation results show superiority of the BFO algorithm to the PSO algorithm.
基金the National Natural Science Foundation of China(No.51109090)the Natural Fund of Fujian Province(No.2015J01214)+2 种基金the Key Project of Fujian Provincial Department of Science & Technology(No.2012H0030)the University’s Innovative Project of Xiamen Science & Technology Bureau(No.3502Z20123019)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)
文摘In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)
文摘Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2-PSAU/2022/01/22797).
文摘The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.