The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improv...The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns.展开更多
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru...Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.展开更多
We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault r...We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.展开更多
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach...The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach of partial derivation with respect to stochastic variables,considering the yield limit,rotation speeds and material density to be the fundamental stochastic variables.Through analyzing a numerical example and a turbo-disk of an aeroengine,the results show that the method developed is successful.展开更多
In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and...In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.展开更多
The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed....The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed.Random sea surface is treated as a narrow-band stochastic process,and the stochastic parametric excitation is studied based on the effective wave theory.The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function.By using the stochastic averaging method,the differential equation of motion is transformed into Ito’s stochastic differential equation.The steady-state probability density function of roll motion is obtained,and the results are validated with the numerical simulation and model test.展开更多
To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random ...To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random fields. We model the heat transfer coefficient and specific heat capacity as spatially random fields instead of traditional random variables. An analysis for calculating the random temperature field of seasonal frozen soil is suggested by the Neumann stochastic finite element method, and here we provide the computational formulae of mathematical expectation, variance and variable coefficient. As shown in the calculation flow chart, the stochastic finite element calculation program for solving the random temperature field, as compiled by Matrix Laboratory (MATLAB) sottware, can directly output the statistical results of the temperature field of frozen soil. An example is presented to demonstrate the random effects from random field parameters, and the feasibility of the proposed approach is proven by compar- ing these results with the results derived when the random parameters are only modeled as random variables. The results show that the Neumann stochastic finite element method can efficiently solve the problem of random temperature fields of frozen soil based on random field theory, and it can reduce the variability of calculation results when the random parameters are modeled as spatial- ly random fields.展开更多
With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion a...With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.展开更多
The stochastic boundary element method is developed to analyze elasticity problems with random material and/or geometrical parameters and ran- domly perturbed boundaries. Based on the first-order Taylor series expansi...The stochastic boundary element method is developed to analyze elasticity problems with random material and/or geometrical parameters and ran- domly perturbed boundaries. Based on the first-order Taylor series expansion, the boundary integration equations concerning the mean and deviation of the displace- ments are derived, respectively. It is found that the randomness of material param- eters is equivalent to a random body force, so the mean and covariance matrices of unknown boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of displacements and stresses at inner points can also be obtained. Numerical examples show that the proposed stochastic boundary element method gives satisfactory solutions, as compared with those obtained by theoretical analysis or other numerical methods.展开更多
In this paper, the hierarchical approach is adopted for series representation of the stochastic nodal displacement vector using the hierarchical basis vectors, while the Karhunen- Loire series expansion technique is e...In this paper, the hierarchical approach is adopted for series representation of the stochastic nodal displacement vector using the hierarchical basis vectors, while the Karhunen- Loire series expansion technique is employed to discretize the random field into a set of random variables. A set of hierarchical basis vectors are defined to approximate the stochastic response quantities. The stochastic variational principle instead of the projection scheme is adopted to develop a hierarchical stochastic finite element method (HSFEM) for stochastic structures under stochastic loads. Simplified expressions of coefficients of governing equations and the first two statistical moments of the response quantities in the schemes of the HSFEM are developed, so that the time consumed for computation can be greatly reduced. Investigation in this paper suggests that the HSFEM yields a series of stiffness equations with similar dimensionality as the perturbation stochastic finite element method (PSFEM). Two examples are presented for numerical study on the performance of the HSFEM in elastic structural problems with stochastic Young's Modulus and external loads. Results show that the proposed method can achieve higher accuracy than the PSFEM for cases with large coefficients of variation, and yield results agreeing well with those obtained by the Monte Carlo simulation (MCS).展开更多
In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC exp...In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC expansion coefficients.The regularity of the solution with respect to the random is analyzed.On the basis of the regularity results,the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved.Numerical examples are presented to support the theoretical analysis.展开更多
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces....We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.展开更多
In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary el...In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.展开更多
In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integr...In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.展开更多
In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology...In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.展开更多
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput...When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.展开更多
In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochast...In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .展开更多
The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the...The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.展开更多
基金National Key R&D Program of China under Grant No.2022YFC3003601。
文摘The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns.
基金financially supported by the National Natural Science Foundation of China(Nos.12302228 and 12372170)。
文摘Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.
文摘We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
文摘The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach of partial derivation with respect to stochastic variables,considering the yield limit,rotation speeds and material density to be the fundamental stochastic variables.Through analyzing a numerical example and a turbo-disk of an aeroengine,the results show that the method developed is successful.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.
基金the State Administration of Science,Technology and Industry for National Defense of China(Grant No.B2420132001).
文摘The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed.Random sea surface is treated as a narrow-band stochastic process,and the stochastic parametric excitation is studied based on the effective wave theory.The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function.By using the stochastic averaging method,the differential equation of motion is transformed into Ito’s stochastic differential equation.The steady-state probability density function of roll motion is obtained,and the results are validated with the numerical simulation and model test.
基金funded by the National Basic Research Program of China (No. 2012CB026103)the National High Technology Research and Development Program of China (No. 2012AA06A401)the National Natural Science Foundation of China (No. 41271096)
文摘To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random fields. We model the heat transfer coefficient and specific heat capacity as spatially random fields instead of traditional random variables. An analysis for calculating the random temperature field of seasonal frozen soil is suggested by the Neumann stochastic finite element method, and here we provide the computational formulae of mathematical expectation, variance and variable coefficient. As shown in the calculation flow chart, the stochastic finite element calculation program for solving the random temperature field, as compiled by Matrix Laboratory (MATLAB) sottware, can directly output the statistical results of the temperature field of frozen soil. An example is presented to demonstrate the random effects from random field parameters, and the feasibility of the proposed approach is proven by compar- ing these results with the results derived when the random parameters are only modeled as random variables. The results show that the Neumann stochastic finite element method can efficiently solve the problem of random temperature fields of frozen soil based on random field theory, and it can reduce the variability of calculation results when the random parameters are modeled as spatial- ly random fields.
基金partially supported by the National Natural Science Foundation of China (No.41230318)
文摘With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.
文摘The stochastic boundary element method is developed to analyze elasticity problems with random material and/or geometrical parameters and ran- domly perturbed boundaries. Based on the first-order Taylor series expansion, the boundary integration equations concerning the mean and deviation of the displace- ments are derived, respectively. It is found that the randomness of material param- eters is equivalent to a random body force, so the mean and covariance matrices of unknown boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of displacements and stresses at inner points can also be obtained. Numerical examples show that the proposed stochastic boundary element method gives satisfactory solutions, as compared with those obtained by theoretical analysis or other numerical methods.
基金Project supported by the National Natural Science Foundation of China (No. 51168003)the Guangxi Program of Science and Technology (Nos. 0991020Z and 2010GXNSFD169008)
文摘In this paper, the hierarchical approach is adopted for series representation of the stochastic nodal displacement vector using the hierarchical basis vectors, while the Karhunen- Loire series expansion technique is employed to discretize the random field into a set of random variables. A set of hierarchical basis vectors are defined to approximate the stochastic response quantities. The stochastic variational principle instead of the projection scheme is adopted to develop a hierarchical stochastic finite element method (HSFEM) for stochastic structures under stochastic loads. Simplified expressions of coefficients of governing equations and the first two statistical moments of the response quantities in the schemes of the HSFEM are developed, so that the time consumed for computation can be greatly reduced. Investigation in this paper suggests that the HSFEM yields a series of stiffness equations with similar dimensionality as the perturbation stochastic finite element method (PSFEM). Two examples are presented for numerical study on the performance of the HSFEM in elastic structural problems with stochastic Young's Modulus and external loads. Results show that the proposed method can achieve higher accuracy than the PSFEM for cases with large coefficients of variation, and yield results agreeing well with those obtained by the Monte Carlo simulation (MCS).
基金Supported by NSFC (91430107/11771138/11171104)the Construct Program of the Key Discipline in Hunan+4 种基金partially supported by Scientific Research Fund of Hunan Provincial Education Department (19B325/19C1059)Hunan International Economics University (2017A05)supported by NSFC (11771137)the Construct Program of the Key Discipline in Hunan Provincea Scientific Research Fund of Hunan Provincial Education Department (16B154)。
文摘In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC expansion coefficients.The regularity of the solution with respect to the random is analyzed.On the basis of the regularity results,the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved.Numerical examples are presented to support the theoretical analysis.
基金Acknowledgements The authors were grateful to Prof. Dongbin Xiu for his help in the stochastic Galerkin and collocation methods, and also appreciated the help of Prof. Ruo Li with AFEPack. T. Lu was supported in part by the National Natural Science Foundation of China (Grant Nos. 11011130029, 91230107).
文摘We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.
文摘In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.
文摘In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.
基金partially supported by China Postdoctoral Science Foundation(2018M643573)National Natural Science Foundation of Shaanxi Province(2019JQ-048)+2 种基金National Natural Science Foundation of China(51739007,61971328,11301392 and 11961009)of ChinaShanghai Peak Discipline Program for Higher Education Institutions(ClassⅠ)–Civil EngineeringFundamental Research Funds for the Central Universities(No.22120180529)。
文摘In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.
文摘When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.
文摘In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .
基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject supported by the Sheng Hua Lie Ying Program of Central South University,China
文摘The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.