This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different...This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.展开更多
We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (...We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
Direct sequence spread spectrum transmission can be realized at low SNR, and has low probabilityof detection. It is aly problem how to obtain the original users' signal in a non-cooperative context. In practicality, ...Direct sequence spread spectrum transmission can be realized at low SNR, and has low probabilityof detection. It is aly problem how to obtain the original users' signal in a non-cooperative context. In practicality, the DS/CDMA sources received are linear convolute mixing. A more complex multichannel blind deconvolution MBD algorithm is required to achieve better source separation. An improved MBD algorithm for separating linear convolved mixtures of signals in CDMA system is proposed. This algorithm is based on minimizing the average squared cross-output-channel-correlation. The mixture coefficients are totally unknown, while some knowledge about temporal model exists. Results show that the proposed algorithm can bring about the exactness and low computational complexity.展开更多
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad...Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.展开更多
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually...A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.展开更多
Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication w...Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors.展开更多
The autoregressive moving average exogenous (ARMAX) model is commonly adopted for describing linear stochastic systems driven by colored noise. The model is a finite mixture with the ARMA component and external inpu...The autoregressive moving average exogenous (ARMAX) model is commonly adopted for describing linear stochastic systems driven by colored noise. The model is a finite mixture with the ARMA component and external inputs. In this paper we focus on a parameter estimate of the ARMAX model. Classical modeling methods are usually based on the assumption that the driven noise in the moving average (MA) part has bounded variances, while in the model considered here the variances of noise may increase by a power of log n. The plant parameters are identified by the recursive stochastic gradient algorithm. The diminishing excitation technique and some results of martingale difference theory are adopted in order to prove the convergence of the identification. Finally, some simulations are given to show the reliability of the theoretical results.展开更多
基金funded by Universiti Putra Malaysia under a Geran Putra Inisiatif(GPI)research grant with reference to GP-GPI/2023/9762100.
文摘This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
文摘We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
基金the National Natural Science Foundation of China (60472052,10577007)the Specialized Research Fund for National Key Lab of Communication (51434020105ZS04).
文摘Direct sequence spread spectrum transmission can be realized at low SNR, and has low probabilityof detection. It is aly problem how to obtain the original users' signal in a non-cooperative context. In practicality, the DS/CDMA sources received are linear convolute mixing. A more complex multichannel blind deconvolution MBD algorithm is required to achieve better source separation. An improved MBD algorithm for separating linear convolved mixtures of signals in CDMA system is proposed. This algorithm is based on minimizing the average squared cross-output-channel-correlation. The mixture coefficients are totally unknown, while some knowledge about temporal model exists. Results show that the proposed algorithm can bring about the exactness and low computational complexity.
文摘Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.
基金supported by the Innovation Foundation for Graduates in National University of Defense Technology,China (GrantNo.B080702)
文摘A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.
基金supported By Guangdong Major Project of Basic and Applied Basic Research(2023B0303000009)Guangdong Basic and Applied Basic Research Foundation(2024A1515030153,2025A1515011587)+1 种基金Project of Department of Education of Guangdong Province(2023ZDZX4046)Shen-zhen Natural Science Fund(Stable Support Plan Program 20231122121608001),Ningbo Municipal Science and Technology Bureau(ZX2024000604).
文摘Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors.
基金the National Natural Science Foundation of China (No. 60474026)
文摘The autoregressive moving average exogenous (ARMAX) model is commonly adopted for describing linear stochastic systems driven by colored noise. The model is a finite mixture with the ARMA component and external inputs. In this paper we focus on a parameter estimate of the ARMAX model. Classical modeling methods are usually based on the assumption that the driven noise in the moving average (MA) part has bounded variances, while in the model considered here the variances of noise may increase by a power of log n. The plant parameters are identified by the recursive stochastic gradient algorithm. The diminishing excitation technique and some results of martingale difference theory are adopted in order to prove the convergence of the identification. Finally, some simulations are given to show the reliability of the theoretical results.