To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o...To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goa...Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.展开更多
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–sol...The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.展开更多
A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The num...A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The numerical results demonstrate that the neutral current sheet has two peaks and two valleys, which is consistent with the result of PFSS model at Wilcox Solar Observatory (WSO). The obtained proton number density at 2.5 Rs is of the same order of magnitude as the result estimated from K-coronal brightness during the CRs 1733-1742 in 1983 made by Wei et al. The radial velocity profile along heliocentric distance is consistent with that of low solar wind speed deduced by Sheeley and Wang et al. However, it is not able to reproduce the fast-speed flow in coronal holes and slow solar wind in streamers because of oversimplified energy equation adopted in our model. Future efforts must be made to remedy this deficiency.展开更多
Molten salt reactor(MSR) is a potential nuclear power reactor of Generation Ⅳ.The working process of the primary loop of an MSR is studied in this paper.A physical model is established to describe the coupled heat tr...Molten salt reactor(MSR) is a potential nuclear power reactor of Generation Ⅳ.The working process of the primary loop of an MSR is studied in this paper.A physical model is established to describe the coupled heat transfer for the MSR core channels,the temperature negative feedback and the neutron characteristics.The simulation code,NDPID,has been developed with the object-oriented method,conducting the neutron diffusion and transient analysis in a parallel way.The simulation data and diagrams of neutron,power,flow rate and temperature can be obtained via graphical user interface.The simulation results can be used for further study on MSRs of larger dimensions and more complicated geometry.展开更多
A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance an...A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.展开更多
Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their h...Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their high technological maturity.Since the Fukushima accident,research on accident-tolerant fuels(ATFs),which are more resistant to serious accidents than conventional fuels,has gradually increased.This study analyzes the neutronics and thermal hydraulics of an SPWR(ACPR50S)for different ATFs,BeO+UO_(2)−SiC,BeO+UO_(2)−FeCrAl,U_(3)Si_(2)−SiC,and U_(3)Si_(2)−FeCrAl,based on a PWR fuel management code,the Bamboo-C deterministic code.In the steady state,the burnup calculations,reactivity coefficients,power and temperature distributions,and control rod reactivity worth were studied.The transients of the control rod ejection accident for the two control rods with the maximum and minimum reactivity worth were analyzed.The results showed that 5%B-10 enrichment in the wet annular burnable absorbers assembly can effectively reduce the initial reactivity and end-of-life reactivity penalty.The BeO+UO2−SiC core exhibited superior neutronic characteristics in terms of burnup and negative temperature reactivity compared with the other three cases owing to the strong moderation ability of BeO+UO_(2)and low neutron absorption of SiC.However,the U_(3)Si_(2)core had a marginally better power-flattening effect than BeO+UO_(2),and the differential worth of each control rod group was similar between different ATFs.During the transient of a control rod ejection,the changes in the fuel temperature,coolant temperature,and coolant density were similar.The maximum difference was less than 10℃ for the fuel temperature and 2℃ for the coolant temperature.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupl...In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.展开更多
The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic fi...The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.展开更多
We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find...We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find that, in long histories, traces of the initial field would be present only in the exact analytical solutions. We conclude that the recovery of initial field is possible only if the equations could be solved analytically or only short time periods are involved. In practice, it is not possible to detect those traces by measurements or observations. If numerical procedures are used, truncation and discretization errors are always present. Fine-tuning of system parameters used or transforming time into another pseudo time frame may allow numerical integration to be carried out backward in time. But numerical instability is still a problem. Large spurious increases found by numerical procedures are most likely due to numerical inaccuracy and instability.展开更多
The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the...The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the simulation based on single-machine infinite-bus system and draw some conclusions. The time consumption of the simulation using EMTDC is much longer than the simulation using BPA under the same length of time. The results of BPA are close to those of EMTDC under steady conditions. The fundamental frequency component of the EMTDC results seems closer to the BPA results than its original value, but they still away from completely consistent. In this simulation of single-machine infinite-bus system, the transient stability results of BPA and EMTDC are close, but the results of BPA are apt to be more conservative. All the conclusions above have a certain reference value to both hybrid simulation and comprehensive analysis method in the study of the AC/DC digital simulation of large power grid.展开更多
Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the interna...Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the internal flow field evolution during transients.Addressing this gap,the study presents an enhanced quasi-three dimensional(quasi-3D)transient simulation technique that integrates component volume effects,offering a significant leap from the preceding quasi-3D transient simulation method based on quasi-steady assumption.By embedding the component volume effects on density,momentum,and energy within the physical temporal dimension of the Navier-Stokes equations,the refined quasi-3D transient model achieves a closer representation of physical phenomena.Validation against a single-shaft turbofan engine’s experimental data confirms the model’s accuracy.Average errors for key performance indicators,including shaft speed,thrust,mass flow rate,and critical component exit temperature and pressure,remain below 0.41%,5.69%,2.55%,3.18%and 0.67%,respectively.Crucially,the model exposes a discernible temporal lag in the compressor outlet pressure and temperature response due to volume effects—previously unquantified in quasi-3D transient simulations.And further exploration of the meridional flow field emphasizes the consequential role of volumes in transient flow field evolution.Incorporating volume effects within quasi-3D transient simulations enhances engine modeling and is pivotal for precise transient analysis in engine design and optimization.展开更多
Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments ha...Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20 ≤ Re ≤ 126) and accelerations (20 m/s2≤ a ≤ 152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo machineries.展开更多
This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a ...This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs.展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings ...Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings which are termed as sparse,moderate and dense are considered,and the induced vortex system and shock structures are compared.A moderate jet spacing configuration is found to generate counter-rotating vortex pairs that transport high-momentum fluid towards the vicinity of wall and strengthen the boundary layer to resist separation,reducing the separation region.The dense jet spacing configuration creates a larger momentum deficit region,reducing the friction downstream of the corner.Analysis of pressure and pressure gradient reveals that dense jet spacing configuration reduces the intensity of separation shock.The impact of varying jet spacings on the turbulent kinetic energy transport mechanism is also investigated by decomposing the budget terms in the transport equation.Furthermore,the spectral characteristics of the separation region are studied using power spectral density and dynamic mode decomposition methods,revealing that moderate jet spacing configuration suppresses low-frequency fluctuations in the separation region.展开更多
文摘To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
基金supported by the Joint Funds of National Natural Science Foundation of China and Shanxi Province(U1710258 and U1810120)Distinguished Youth Funds of National Natural Science Foundation of China(51925402)+3 种基金Ten Thousand Talent Program of China for Leading Scientists in Science,Technology and Innovation,Shanxi Science and Technology Major Project Funds(No.20201102004)Shanxi“1331 Project”Funds,Shanxi Province Key Laboratory Construction Project Funds(No.202104010910021)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD001,No.2021SX-TD002)National Natural Science Foundation of China(51804208).
文摘Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.
基金co-supported by the Innovation Foundation of Beihang University for Ph.D. Graduatesthe National Natural Science Foundation of China (No. 51206007)
文摘The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
基金Supported by the National Natural Science Foundation of China (40374056, 40204010, 40536029)the International Collaboration Research Team Program of the Chinese Academy of Sciences
文摘A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The numerical results demonstrate that the neutral current sheet has two peaks and two valleys, which is consistent with the result of PFSS model at Wilcox Solar Observatory (WSO). The obtained proton number density at 2.5 Rs is of the same order of magnitude as the result estimated from K-coronal brightness during the CRs 1733-1742 in 1983 made by Wei et al. The radial velocity profile along heliocentric distance is consistent with that of low solar wind speed deduced by Sheeley and Wang et al. However, it is not able to reproduce the fast-speed flow in coronal holes and slow solar wind in streamers because of oversimplified energy equation adopted in our model. Future efforts must be made to remedy this deficiency.
基金Supported by the National Nature Science Foundation of China(Nos.11075057.11035009 and 10979074)
文摘Molten salt reactor(MSR) is a potential nuclear power reactor of Generation Ⅳ.The working process of the primary loop of an MSR is studied in this paper.A physical model is established to describe the coupled heat transfer for the MSR core channels,the temperature negative feedback and the neutron characteristics.The simulation code,NDPID,has been developed with the object-oriented method,conducting the neutron diffusion and transient analysis in a parallel way.The simulation data and diagrams of neutron,power,flow rate and temperature can be obtained via graphical user interface.The simulation results can be used for further study on MSRs of larger dimensions and more complicated geometry.
文摘A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.
基金supported by the National Natural Science Foundation of China (No. 12205150)Natural Science Foundation of Jiangsu Province (No. BK20210304)+1 种基金China Postdoctoral Science Foundation (Nos. 2020M681594 and 2019TQ0148)Jiangsu Province Postdoctoral Science Foundation (Nos. 2020Z231)
文摘Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their high technological maturity.Since the Fukushima accident,research on accident-tolerant fuels(ATFs),which are more resistant to serious accidents than conventional fuels,has gradually increased.This study analyzes the neutronics and thermal hydraulics of an SPWR(ACPR50S)for different ATFs,BeO+UO_(2)−SiC,BeO+UO_(2)−FeCrAl,U_(3)Si_(2)−SiC,and U_(3)Si_(2)−FeCrAl,based on a PWR fuel management code,the Bamboo-C deterministic code.In the steady state,the burnup calculations,reactivity coefficients,power and temperature distributions,and control rod reactivity worth were studied.The transients of the control rod ejection accident for the two control rods with the maximum and minimum reactivity worth were analyzed.The results showed that 5%B-10 enrichment in the wet annular burnable absorbers assembly can effectively reduce the initial reactivity and end-of-life reactivity penalty.The BeO+UO2−SiC core exhibited superior neutronic characteristics in terms of burnup and negative temperature reactivity compared with the other three cases owing to the strong moderation ability of BeO+UO_(2)and low neutron absorption of SiC.However,the U_(3)Si_(2)core had a marginally better power-flattening effect than BeO+UO_(2),and the differential worth of each control rod group was similar between different ATFs.During the transient of a control rod ejection,the changes in the fuel temperature,coolant temperature,and coolant density were similar.The maximum difference was less than 10℃ for the fuel temperature and 2℃ for the coolant temperature.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306113)
文摘In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.
文摘The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.
文摘We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find that, in long histories, traces of the initial field would be present only in the exact analytical solutions. We conclude that the recovery of initial field is possible only if the equations could be solved analytically or only short time periods are involved. In practice, it is not possible to detect those traces by measurements or observations. If numerical procedures are used, truncation and discretization errors are always present. Fine-tuning of system parameters used or transforming time into another pseudo time frame may allow numerical integration to be carried out backward in time. But numerical instability is still a problem. Large spurious increases found by numerical procedures are most likely due to numerical inaccuracy and instability.
文摘The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the simulation based on single-machine infinite-bus system and draw some conclusions. The time consumption of the simulation using EMTDC is much longer than the simulation using BPA under the same length of time. The results of BPA are close to those of EMTDC under steady conditions. The fundamental frequency component of the EMTDC results seems closer to the BPA results than its original value, but they still away from completely consistent. In this simulation of single-machine infinite-bus system, the transient stability results of BPA and EMTDC are close, but the results of BPA are apt to be more conservative. All the conclusions above have a certain reference value to both hybrid simulation and comprehensive analysis method in the study of the AC/DC digital simulation of large power grid.
基金supported by the National Natural Science Foundation of China(No.52376021).
文摘Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the internal flow field evolution during transients.Addressing this gap,the study presents an enhanced quasi-three dimensional(quasi-3D)transient simulation technique that integrates component volume effects,offering a significant leap from the preceding quasi-3D transient simulation method based on quasi-steady assumption.By embedding the component volume effects on density,momentum,and energy within the physical temporal dimension of the Navier-Stokes equations,the refined quasi-3D transient model achieves a closer representation of physical phenomena.Validation against a single-shaft turbofan engine’s experimental data confirms the model’s accuracy.Average errors for key performance indicators,including shaft speed,thrust,mass flow rate,and critical component exit temperature and pressure,remain below 0.41%,5.69%,2.55%,3.18%and 0.67%,respectively.Crucially,the model exposes a discernible temporal lag in the compressor outlet pressure and temperature response due to volume effects—previously unquantified in quasi-3D transient simulations.And further exploration of the meridional flow field emphasizes the consequential role of volumes in transient flow field evolution.Incorporating volume effects within quasi-3D transient simulations enhances engine modeling and is pivotal for precise transient analysis in engine design and optimization.
基金supported by National Natural Science Foundation of China(Grant Nos.50979095,51176168,50906074)China Postdoctoral Science Foundation(Grant Nos.20100471697,201104713)
文摘Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20 ≤ Re ≤ 126) and accelerations (20 m/s2≤ a ≤ 152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo machineries.
基金This work was supported by the Fundamental Research Grant Scheme(FRGS)sponsored by the Ministry of Higher Education,Malaysia under Grant No.FRGS/1/2020/TK0/USM/02/7.
文摘This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs.
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
基金Supported by the National Natural Science Foundation of China(Nos.11972064,92052104)the Key Laboratory of Computational Aerodynamics,AVIC Aerodynamics Research Institute,China(No.YL2022XFX0405)the Fundamental Research Funds for the Central Universities,China.
文摘Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings which are termed as sparse,moderate and dense are considered,and the induced vortex system and shock structures are compared.A moderate jet spacing configuration is found to generate counter-rotating vortex pairs that transport high-momentum fluid towards the vicinity of wall and strengthen the boundary layer to resist separation,reducing the separation region.The dense jet spacing configuration creates a larger momentum deficit region,reducing the friction downstream of the corner.Analysis of pressure and pressure gradient reveals that dense jet spacing configuration reduces the intensity of separation shock.The impact of varying jet spacings on the turbulent kinetic energy transport mechanism is also investigated by decomposing the budget terms in the transport equation.Furthermore,the spectral characteristics of the separation region are studied using power spectral density and dynamic mode decomposition methods,revealing that moderate jet spacing configuration suppresses low-frequency fluctuations in the separation region.