Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in...Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in poor formability at room temperature.Therefore,the knowledge of recrystallization and grain growth is critical for modifying textures of Mg-Al alloy sheets.The static recrystallization and texture evolution in a cold-rolled dilute Mg-1Al(wt.%)alloy during various annealed temperatures ranging from 300℃ to 450℃,have been investigated using the quasi in-situ electron backscatter diffraction(EBSD)method.The as-rolled Mg-1Al alloy shows a dominant basal texture,which weakens and broadens in the rolling direction(RD)during the subsequent annealing,accompanied by the formation of{1010}texture component.Particularly,the {1010} texture component is more pronounced after annealing at high temperatures.The quasi in-situ EBSD results show that recrystallized grains are mainly induced by shear bands,which exhibit a wide spectrum of orientations with c-axis tilt angles ranging 20°-45°from the normal direction(ND).Orientations of shear band-induced recrystallized grains are retained during the entire recrystallization process,resulting in a reduction in the texture intensity.Moreover,recrystallized grains belonging to the {1010}texture component grow preferentially compared to those with other orientations,which is attributed to low energy grain boundaries,especially grain boundaries with∼30°misorientation angles.Furthermore,the high temperature annealing facilitates the rapid growth of grain boundaries having a 30°misorientation angle,leading to the occurrence of distinct {1010} texture after annealing at 450℃ for 1 h.The results provide insights for texture modification of rare earth-free low-alloyed Mg alloys by controlling annealing parameters.展开更多
Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical...Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.展开更多
Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the s...Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,an...Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.展开更多
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano...Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring...Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades.展开更多
The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler ne...The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.展开更多
Hydrocolloids are widely used in meat products and pureed foods as they offer thickening and viscosityenhancing effects that facilitate shaping and improve stability.In this study,the static shear rheological and dyna...Hydrocolloids are widely used in meat products and pureed foods as they offer thickening and viscosityenhancing effects that facilitate shaping and improve stability.In this study,the static shear rheological and dynamic viscoelastic properties of pumpkin puree(S)and pork mince(P)with the addition of various hydrocolloids were considered.Dedicated material printing experiments were conducted by means of a three-dimensional printing platform by using a coaxial dual-nozzle for sandwich composite printing of four different materials.In particular,the impact of different process parameters(printing speed 10~30 mm/s,filling density 10%~50%)was assessed in terms of 3D printing adaptability and final shape of the pumpkin puree-pork mince products.The results have indicated that the addition of hydrocolloids significantly improves the rheological properties of these materials,enhancing their stability in the 3D printing process.Experiments have revealed that with an increase in the xanthan gum conte nt,the viscosity of pumpkin puree decreases.The relationship between the elastic modulus and viscous modulus for the minced pork follows the inequality P4<P3<P2<P1(1.17%,1.75%,2.13%,and 2.88%xanthan gum content,respectively).A“material formula”(detailed composition of the material)suitable for 3D food printing has been derived accordingly.展开更多
Dispersion measure in an FRB’s signal is produced by the photons of the radio waves interacting with the free electrons in the IGM. In New Tired Light (NTL), redshifts are produced by the photons of light interacting...Dispersion measure in an FRB’s signal is produced by the photons of the radio waves interacting with the free electrons in the IGM. In New Tired Light (NTL), redshifts are produced by the photons of light interacting with these self-same electrons and so, one would expect a direct relationship between the DM of an FRB and the redshift of the host galaxy. However, workers in this field assume expansion and weight the DM by dividing it by the scale factor (1 + z) to allow for expansion. Once this weighting is removed, it was predicted back in 2016 (when the first FRB was localized) and later presented at a conference and published in the proceedings that, as more FRB’s were localized, a graph of DM versus ln(1 + z) would be a straight line of gradient (mec/2hre) or 7.32 × 1025 m−2 in SI units. The original paper had twenty-four data points but this has risen significantly to sixty-four useable FRB’s and so this corrigendum updates that paper so that all sixty-four are used. The data give a straight-line graph of gradient 7.12 × 1025 m−2, a difference of 3% from (mec/2hre) predicted nine years earlier.展开更多
Purpose–This study solves the key problem that the static level monitoring is susceptible to temperature interference and affects the accuracy in slope instability/deformation monitoring.The purpose is to develop a r...Purpose–This study solves the key problem that the static level monitoring is susceptible to temperature interference and affects the accuracy in slope instability/deformation monitoring.The purpose is to develop a reliable temperature compensation method for the system,improve the accuracy of slope stability monitoring and provide support for improving the safety and safety monitoring of engineering spoil slope and other projects.Design/methodology/approach–Combined with theoretical analysis and experimental verification,the temperature compensation method is explored.The working principle of the hydrostatic leveling monitoring system is analyzed and the data processing formula,the temperature error calculation formula and the calculation formula for eliminating the error settlement value are derived.The temperature compensation method is established and verified by the field test of the engineering spoil slope which is disturbed by a debris flow.Findings–The experimental results show that this method can reduce the error of the static level monitoring system by about 40%.The field test shows that the fluctuation of slope settlement monitoring value is reduced after temperature compensation and the monitoring value is consistent with the actual situation,which has certain practicability.Originality/value–The originality of this study is to derive a theoretical formula for quantifying/eliminating temperature errors in static leveling and to establish a practical temperature compensation method.The accuracy of the system is improved,which provides a reference for slope stability monitoring under complex environment(especially railway geotechnical engineering)and promotes the development of precision monitoring technology.展开更多
The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to a...The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.展开更多
China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its constructio...China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its construction quality is easily affected by traditional manual operation technology,resulting in low construction efficiency and control accuracy,easy to form a hidden danger of quality and safety,it is difficult to meet the needs of less humanized,standardized intelligent construction trend.Based on the research on the intelligent prestressed construction control and testing technology and equipment for railway bridges,this paper proposes the integration of intelligent prestressed tension control and tunnel friction test of railway bridges,intelligent grouting control of tunnel and intelligent testing of beam construction quality,and sets up a complete technical system and integrated equipment for intelligent prestressed construction of bridges based on the industrial Internet of Things(IoT).Overall,improve the quality and efficiency of bridge production,construction,and management.展开更多
Recent advances in organ transplantation,regenerative medicine,and drug discovery have emphasized the critical importance of effective preservation techniques for organs.Despite these advances,current preservation tec...Recent advances in organ transplantation,regenerative medicine,and drug discovery have emphasized the critical importance of effective preservation techniques for organs.Despite these advances,current preservation techniques have significant limitations in maintaining the viability and functional efficacy of organs over the long term.As a result,there is a pressing need to develop reliable and efficient preservation strategies for organs.Currently,the clinical standard for organ preservation involves the use of static cold storage and organ machine perfusion,but these methods can only preserve organs for a couple of days or even a few hours.Notably,the development of cryobiology has yielded promising alternatives.In this review,we aim to provide a comprehensive overview of the progression of organ preservation methods,while emphasizing the limitations of traditional approaches.Moreover,we evaluate advanced preservation techniques for organs,including kidneys,livers,hearts,lungs,and intestines.Furthermore,we share a progress perspective on the future of organ preservation,with the ultimate goal of achieving viable long-term preservation to address the pressing issue of organ shortage.展开更多
Twins play an important role in the texture transition during annealing.In a cold rolled high rare earth content magnesium(Mg)alloys with{10–12}extension twins,{11–21}extension twins,{10–11}compression twins and{10...Twins play an important role in the texture transition during annealing.In a cold rolled high rare earth content magnesium(Mg)alloys with{10–12}extension twins,{11–21}extension twins,{10–11}compression twins and{10–11}-{10–12}double twins and frequent twin-twin interactions,quasi-in-situ electron backscatter diffraction method was used to observe the twin induced static recrystallization(SRX)and related effect on texture during annealing.The results show that basal component was consumed owing to the SRX occurred in basal oriented{10–12}twins and SRXed grains with several specific orientations show preferential grain growth.SRX widely operated in the{10–12}extension and{11–21}extension twins,but absent in most{10–11}compression and{10–11}-{10–12}double twins,which is different to traditional twin induced SRX.Most compression/double twins detwinned while only partial tension twins detwinned.Operation of{11–21}twins and resultant twin-twin interaction facilitate the formation of serrated twin boundaries,which can serve as nucleation sites.Activation of<c+a>dislocation and related dislocation interaction in high dislocation density areas promote the formation of new grain boundaries and related SRX.Profuse<c+a>dislocations in basal oriented twins release the strain accumulation in compression/double twins and thus result in the absence of SRX.The twin size difference,storage energy and dislocation-twin interaction commonly functioned to the detwinning during annealing.The near-coincide site lattice boundaries that show high mobility were considered to be the important contributor to the preferential grain growth of SRXed grains.展开更多
Lightweight structures for gears enable a reduction in material usage while maintaining the technical function of the gear.Previous approaches have pursued the strategy of lightweight structures in the gear wheel body...Lightweight structures for gears enable a reduction in material usage while maintaining the technical function of the gear.Previous approaches have pursued the strategy of lightweight structures in the gear wheel body.By taking inspiration from biological models and utilizing material savings in the gear rim,new design approaches for the lightweight design of gears can be realized.For this reason,a holistic biological design approach for spur gears is presented.In addition to the method of topology optimization,a biologically inspired approach based on diatoms is introduced,which achieves a weight reduction of over 50%compared to conventional solid gears.Diatom structures are extracted from the oceans,digitally modelled,and adapted to the load conditions of a reference gear by parametric design and simulation optimization.For the experimental validation of the design,a manufactured gear is statically loaded in the nominal load range and analyzed using a tactile geometry gear measurement.The measurement results of selected standard gear parameters show that the gear does not exhibit any plastic deformation for the nominal load capacity of 383 Nm,validating the presented design approach.展开更多
Static magnetic field(SMF)exposure exerts notable regulatory effects on metabolic disorders,yet its influence on metabolic dysfunction-associated fatty liver disease(MAFLD)and gut microbiota during disease progression...Static magnetic field(SMF)exposure exerts notable regulatory effects on metabolic disorders,yet its influence on metabolic dysfunction-associated fatty liver disease(MAFLD)and gut microbiota during disease progression remains unclear.In this study,MAFLD was induced in mice via a high-fat diet(HFD),followed by exposure to a 0.2 T SMF for 12 h per day over a 10 week period.SMF treatment significantly attenuated body weight gain,alleviated hepatic lipid accumulation,and improved liver function.Sequencing analysis of intestinal contents revealed a significant increase in microbial diversity and enrichment of beneficial bacterial taxa under SMF exposure.Integrated multi-omics analysis and Spearman correlation further demonstrated that SMF significantly reduced the expression of genes involved in fatty acid synthesis and modulated pathways related to polyunsaturated fatty acid and glutamate metabolism,in close association with shifts in beneficial gut microbiota.Furthermore,transcriptomic profiling of liver tissue indicated that SMF inhibited fatty acid synthesis and elongation by regulating the expression of peroxisome proliferator-activated receptorγ(PPARγ),thereby contributing to reduced hepatic burden.These findings highlight SMF as a promising non-invasive strategy for MAFLD intervention and provide insights into the microbiota-mediated metabolic axis underlying its therapeutic effects.展开更多
The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-...The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.展开更多
Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length...Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.展开更多
基金by National Natural Science Foundation of China(Nos.52271103,52334010 and 52271031)Jilin Scientific and Technological Development Program(Nos.20220301026GX,20210201115GX and 20210301041GX).
文摘Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in poor formability at room temperature.Therefore,the knowledge of recrystallization and grain growth is critical for modifying textures of Mg-Al alloy sheets.The static recrystallization and texture evolution in a cold-rolled dilute Mg-1Al(wt.%)alloy during various annealed temperatures ranging from 300℃ to 450℃,have been investigated using the quasi in-situ electron backscatter diffraction(EBSD)method.The as-rolled Mg-1Al alloy shows a dominant basal texture,which weakens and broadens in the rolling direction(RD)during the subsequent annealing,accompanied by the formation of{1010}texture component.Particularly,the {1010} texture component is more pronounced after annealing at high temperatures.The quasi in-situ EBSD results show that recrystallized grains are mainly induced by shear bands,which exhibit a wide spectrum of orientations with c-axis tilt angles ranging 20°-45°from the normal direction(ND).Orientations of shear band-induced recrystallized grains are retained during the entire recrystallization process,resulting in a reduction in the texture intensity.Moreover,recrystallized grains belonging to the {1010}texture component grow preferentially compared to those with other orientations,which is attributed to low energy grain boundaries,especially grain boundaries with∼30°misorientation angles.Furthermore,the high temperature annealing facilitates the rapid growth of grain boundaries having a 30°misorientation angle,leading to the occurrence of distinct {1010} texture after annealing at 450℃ for 1 h.The results provide insights for texture modification of rare earth-free low-alloyed Mg alloys by controlling annealing parameters.
基金The National Natural Science Foundation of China(No.52338011)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0067).
文摘Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.
基金This work was supported by the Le Quy Don Technical University Research Fund(Grant No.23.1.11).
文摘Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
文摘Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.
基金supported by Scientific Research Projects Department of Istanbul Technical University.Project Number:MGA-2018-41546.Grant receiver:E.T.
文摘Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978672 and 52308335)the Natural Science Funding of Hunan Province(Grant No.2023JJ41054)the Natural Science Research Project of Anhui Educational Committee(Grant No.2023AH051170)。
文摘Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades.
基金supported by the National Natural Science Foundation of China(No.52293471)National Key R&D Program of China(No.2022YFB3707303).
文摘The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.
基金supported by National Science Fund for Distinguished Young Scholars of China(Grant No.62203198)Key R&D project of Shandong Province,China(Grant No.2022XGC010701).
文摘Hydrocolloids are widely used in meat products and pureed foods as they offer thickening and viscosityenhancing effects that facilitate shaping and improve stability.In this study,the static shear rheological and dynamic viscoelastic properties of pumpkin puree(S)and pork mince(P)with the addition of various hydrocolloids were considered.Dedicated material printing experiments were conducted by means of a three-dimensional printing platform by using a coaxial dual-nozzle for sandwich composite printing of four different materials.In particular,the impact of different process parameters(printing speed 10~30 mm/s,filling density 10%~50%)was assessed in terms of 3D printing adaptability and final shape of the pumpkin puree-pork mince products.The results have indicated that the addition of hydrocolloids significantly improves the rheological properties of these materials,enhancing their stability in the 3D printing process.Experiments have revealed that with an increase in the xanthan gum conte nt,the viscosity of pumpkin puree decreases.The relationship between the elastic modulus and viscous modulus for the minced pork follows the inequality P4<P3<P2<P1(1.17%,1.75%,2.13%,and 2.88%xanthan gum content,respectively).A“material formula”(detailed composition of the material)suitable for 3D food printing has been derived accordingly.
文摘Dispersion measure in an FRB’s signal is produced by the photons of the radio waves interacting with the free electrons in the IGM. In New Tired Light (NTL), redshifts are produced by the photons of light interacting with these self-same electrons and so, one would expect a direct relationship between the DM of an FRB and the redshift of the host galaxy. However, workers in this field assume expansion and weight the DM by dividing it by the scale factor (1 + z) to allow for expansion. Once this weighting is removed, it was predicted back in 2016 (when the first FRB was localized) and later presented at a conference and published in the proceedings that, as more FRB’s were localized, a graph of DM versus ln(1 + z) would be a straight line of gradient (mec/2hre) or 7.32 × 1025 m−2 in SI units. The original paper had twenty-four data points but this has risen significantly to sixty-four useable FRB’s and so this corrigendum updates that paper so that all sixty-four are used. The data give a straight-line graph of gradient 7.12 × 1025 m−2, a difference of 3% from (mec/2hre) predicted nine years earlier.
基金funded by the Scientific Research Project of China Academy of Railway Sciences Group Co.,Ltd(No.2024YJ332 and No.2024QT005)Scientific Research Special Project of China State Railway Group Co.,Ltd(No.TICSTR-2024-Ⅳ-007).
文摘Purpose–This study solves the key problem that the static level monitoring is susceptible to temperature interference and affects the accuracy in slope instability/deformation monitoring.The purpose is to develop a reliable temperature compensation method for the system,improve the accuracy of slope stability monitoring and provide support for improving the safety and safety monitoring of engineering spoil slope and other projects.Design/methodology/approach–Combined with theoretical analysis and experimental verification,the temperature compensation method is explored.The working principle of the hydrostatic leveling monitoring system is analyzed and the data processing formula,the temperature error calculation formula and the calculation formula for eliminating the error settlement value are derived.The temperature compensation method is established and verified by the field test of the engineering spoil slope which is disturbed by a debris flow.Findings–The experimental results show that this method can reduce the error of the static level monitoring system by about 40%.The field test shows that the fluctuation of slope settlement monitoring value is reduced after temperature compensation and the monitoring value is consistent with the actual situation,which has certain practicability.Originality/value–The originality of this study is to derive a theoretical formula for quantifying/eliminating temperature errors in static leveling and to establish a practical temperature compensation method.The accuracy of the system is improved,which provides a reference for slope stability monitoring under complex environment(especially railway geotechnical engineering)and promotes the development of precision monitoring technology.
基金supported in part by the National Specialized Research Project(No.XXZ3-XX21-3).
文摘The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.
基金Scientific and Technological Development Project of China Railway Design Group Co.,Ltd.(No.2022A02480005)Technology Development Project of China Railway Design Group Co.,Ltd.(No.2023A0248001).
文摘China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its construction quality is easily affected by traditional manual operation technology,resulting in low construction efficiency and control accuracy,easy to form a hidden danger of quality and safety,it is difficult to meet the needs of less humanized,standardized intelligent construction trend.Based on the research on the intelligent prestressed construction control and testing technology and equipment for railway bridges,this paper proposes the integration of intelligent prestressed tension control and tunnel friction test of railway bridges,intelligent grouting control of tunnel and intelligent testing of beam construction quality,and sets up a complete technical system and integrated equipment for intelligent prestressed construction of bridges based on the industrial Internet of Things(IoT).Overall,improve the quality and efficiency of bridge production,construction,and management.
基金financially supported by the National Key Research and Development Program of China(2022YFC2100800)the National Natural Science Foundation of China(22478296,22078238,52373117,and U23B20121)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations(24HHWCSS00005)the Open Funding Project of the National Key Laboratory of Biochemical Engineering。
文摘Recent advances in organ transplantation,regenerative medicine,and drug discovery have emphasized the critical importance of effective preservation techniques for organs.Despite these advances,current preservation techniques have significant limitations in maintaining the viability and functional efficacy of organs over the long term.As a result,there is a pressing need to develop reliable and efficient preservation strategies for organs.Currently,the clinical standard for organ preservation involves the use of static cold storage and organ machine perfusion,but these methods can only preserve organs for a couple of days or even a few hours.Notably,the development of cryobiology has yielded promising alternatives.In this review,we aim to provide a comprehensive overview of the progression of organ preservation methods,while emphasizing the limitations of traditional approaches.Moreover,we evaluate advanced preservation techniques for organs,including kidneys,livers,hearts,lungs,and intestines.Furthermore,we share a progress perspective on the future of organ preservation,with the ultimate goal of achieving viable long-term preservation to address the pressing issue of organ shortage.
基金supported by the National Natural Science Foundation of China(Nos.52301164,52371121 and 52271107).
文摘Twins play an important role in the texture transition during annealing.In a cold rolled high rare earth content magnesium(Mg)alloys with{10–12}extension twins,{11–21}extension twins,{10–11}compression twins and{10–11}-{10–12}double twins and frequent twin-twin interactions,quasi-in-situ electron backscatter diffraction method was used to observe the twin induced static recrystallization(SRX)and related effect on texture during annealing.The results show that basal component was consumed owing to the SRX occurred in basal oriented{10–12}twins and SRXed grains with several specific orientations show preferential grain growth.SRX widely operated in the{10–12}extension and{11–21}extension twins,but absent in most{10–11}compression and{10–11}-{10–12}double twins,which is different to traditional twin induced SRX.Most compression/double twins detwinned while only partial tension twins detwinned.Operation of{11–21}twins and resultant twin-twin interaction facilitate the formation of serrated twin boundaries,which can serve as nucleation sites.Activation of<c+a>dislocation and related dislocation interaction in high dislocation density areas promote the formation of new grain boundaries and related SRX.Profuse<c+a>dislocations in basal oriented twins release the strain accumulation in compression/double twins and thus result in the absence of SRX.The twin size difference,storage energy and dislocation-twin interaction commonly functioned to the detwinning during annealing.The near-coincide site lattice boundaries that show high mobility were considered to be the important contributor to the preferential grain growth of SRXed grains.
基金funded by the Federal Ministry for Economic Affairs and Climate Action as part of the Technology Transfer Program Lightweight Construction(Grant no.03LB1000A).
文摘Lightweight structures for gears enable a reduction in material usage while maintaining the technical function of the gear.Previous approaches have pursued the strategy of lightweight structures in the gear wheel body.By taking inspiration from biological models and utilizing material savings in the gear rim,new design approaches for the lightweight design of gears can be realized.For this reason,a holistic biological design approach for spur gears is presented.In addition to the method of topology optimization,a biologically inspired approach based on diatoms is introduced,which achieves a weight reduction of over 50%compared to conventional solid gears.Diatom structures are extracted from the oceans,digitally modelled,and adapted to the load conditions of a reference gear by parametric design and simulation optimization.For the experimental validation of the design,a manufactured gear is statically loaded in the nominal load range and analyzed using a tactile geometry gear measurement.The measurement results of selected standard gear parameters show that the gear does not exhibit any plastic deformation for the nominal load capacity of 383 Nm,validating the presented design approach.
基金supported by the National Natural Science Foundation of China(32470122)Heye Health Technology Chong Ming Project(HYCMP-2023006)。
文摘Static magnetic field(SMF)exposure exerts notable regulatory effects on metabolic disorders,yet its influence on metabolic dysfunction-associated fatty liver disease(MAFLD)and gut microbiota during disease progression remains unclear.In this study,MAFLD was induced in mice via a high-fat diet(HFD),followed by exposure to a 0.2 T SMF for 12 h per day over a 10 week period.SMF treatment significantly attenuated body weight gain,alleviated hepatic lipid accumulation,and improved liver function.Sequencing analysis of intestinal contents revealed a significant increase in microbial diversity and enrichment of beneficial bacterial taxa under SMF exposure.Integrated multi-omics analysis and Spearman correlation further demonstrated that SMF significantly reduced the expression of genes involved in fatty acid synthesis and modulated pathways related to polyunsaturated fatty acid and glutamate metabolism,in close association with shifts in beneficial gut microbiota.Furthermore,transcriptomic profiling of liver tissue indicated that SMF inhibited fatty acid synthesis and elongation by regulating the expression of peroxisome proliferator-activated receptorγ(PPARγ),thereby contributing to reduced hepatic burden.These findings highlight SMF as a promising non-invasive strategy for MAFLD intervention and provide insights into the microbiota-mediated metabolic axis underlying its therapeutic effects.
基金supported in part by the National Natural Science Foundation of China(Numbers 62171445,62471477 and 62201592).
文摘The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.
文摘Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.