To obtain the certificate of airworthiness,it is essential to conduct a full-scale aircraft static test.During such test,accurate and comprehensive wing deformation measurement is crucial for assessing its strength,st...To obtain the certificate of airworthiness,it is essential to conduct a full-scale aircraft static test.During such test,accurate and comprehensive wing deformation measurement is crucial for assessing its strength,stiffness,and bearing capability.This paper proposes a novel and cost-effective videogrammetric method using multi-camera system to achieve the non-contact,highprecision,and 3D measurement of overall static deformation for the large-scale wing structure.To overcome the difficulties of making,carrying,and employing the large 2D or 3D target for calibrating the cameras with large field of view,a flexible stereo cameras calibration method combining 1D target and epipolar geometry is proposed.The global calibration method,aided by a total station,is employed to unify the 3D data obtained from various binocular subsystems.A series of static load tests using a 10-meter-long large-scale wing have been conducted to validate the proposed system and methods.Furthermore,the proposed method was applied to the practical wing deformation measurement of both wings with a wingspan of 33.6 m in the full-size civil aircraft static test.The overall 3D profile and displacement data of the tested wing under various loads can be accurately obtained.The maximum error of distance and displacement measurement is less than 4.5 mm within the measurement range of 35 m in all load cases.These results demonstrate that the proposed method achieves effective,high-accuracy,on-site,and visualized wing deformation measurement,making it a promising approach for full-scale aircraft wing static test.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to a...The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.展开更多
China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its constructio...China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its construction quality is easily affected by traditional manual operation technology,resulting in low construction efficiency and control accuracy,easy to form a hidden danger of quality and safety,it is difficult to meet the needs of less humanized,standardized intelligent construction trend.Based on the research on the intelligent prestressed construction control and testing technology and equipment for railway bridges,this paper proposes the integration of intelligent prestressed tension control and tunnel friction test of railway bridges,intelligent grouting control of tunnel and intelligent testing of beam construction quality,and sets up a complete technical system and integrated equipment for intelligent prestressed construction of bridges based on the industrial Internet of Things(IoT).Overall,improve the quality and efficiency of bridge production,construction,and management.展开更多
Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used t...A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.展开更多
Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the eq...Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism.The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant.Some new load cells,test procedure,and construction technology were adopted based on the applications to different deep foundations,which could enlarge the application scopes of bi-directional loading test.A new type of bi-directional loading test for pipe pile was conducted,in which the load cell was installed and loaded after the pipe pile with special connector has been set up.Unlike the conventional bi-directional loading test,the load cell can be reused and shows an evident economic benefit.展开更多
Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Gro...Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.展开更多
In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal ...In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.展开更多
Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural facto...Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.展开更多
The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained t...The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.展开更多
The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for br...The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for bridge inspection.This article summarizes the purpose of the static load test for a continuous rigid-frame railway bridge,including the required equipment,operation methods,etc.,and lists examples to analyze the operation process and precautions of static load test,hoping to provide reference information for relevant personnel.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.How...The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.展开更多
With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surr...With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surrounding rock in deep underground engineering.The traditional rock bolt is prone to brittle fracture under high geo-stress due to its low elongation.Therefore,this work aims to develop a novel energy-absorbing bolt with constant resistance and large displacement to reinforce the surrounding rock with a risk of large deformation or rockburst.The novel energy-absorbing bolt refereed as rolling extrusion rock bolt(RE bolt)is mainly consists of sleeve tube with a variable cross-section,energy absorption slider with steel balls embedded,steel bar connected with the energy absorption slider.The rolling extrusion is adopted to produce the resistance force of the RE bolt,which avoids the sudden attenuation of resistance force and the abrasion of the energy absorption slider.The static pull test is conducted to study the resistance force and deformation characteristics of the RE bolt with different specifications.Results imply that the RE bolt has higher resistance force,larger deformation capacity and energy absorption capacity.The work of this study provides an effective solution for the reinforcement of surrounding rock in deep rock engineering.展开更多
In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the...In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.展开更多
A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the...A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.展开更多
In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the ...In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors.展开更多
文摘To obtain the certificate of airworthiness,it is essential to conduct a full-scale aircraft static test.During such test,accurate and comprehensive wing deformation measurement is crucial for assessing its strength,stiffness,and bearing capability.This paper proposes a novel and cost-effective videogrammetric method using multi-camera system to achieve the non-contact,highprecision,and 3D measurement of overall static deformation for the large-scale wing structure.To overcome the difficulties of making,carrying,and employing the large 2D or 3D target for calibrating the cameras with large field of view,a flexible stereo cameras calibration method combining 1D target and epipolar geometry is proposed.The global calibration method,aided by a total station,is employed to unify the 3D data obtained from various binocular subsystems.A series of static load tests using a 10-meter-long large-scale wing have been conducted to validate the proposed system and methods.Furthermore,the proposed method was applied to the practical wing deformation measurement of both wings with a wingspan of 33.6 m in the full-size civil aircraft static test.The overall 3D profile and displacement data of the tested wing under various loads can be accurately obtained.The maximum error of distance and displacement measurement is less than 4.5 mm within the measurement range of 35 m in all load cases.These results demonstrate that the proposed method achieves effective,high-accuracy,on-site,and visualized wing deformation measurement,making it a promising approach for full-scale aircraft wing static test.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
基金supported in part by the National Specialized Research Project(No.XXZ3-XX21-3).
文摘The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.
基金Scientific and Technological Development Project of China Railway Design Group Co.,Ltd.(No.2022A02480005)Technology Development Project of China Railway Design Group Co.,Ltd.(No.2023A0248001).
文摘China's railway prestressed concrete bridge has more than 600000 holes,prestressed engineering is a key force system affecting the safety and durability of the prestressed concrete bridge structure,its construction quality is easily affected by traditional manual operation technology,resulting in low construction efficiency and control accuracy,easy to form a hidden danger of quality and safety,it is difficult to meet the needs of less humanized,standardized intelligent construction trend.Based on the research on the intelligent prestressed construction control and testing technology and equipment for railway bridges,this paper proposes the integration of intelligent prestressed tension control and tunnel friction test of railway bridges,intelligent grouting control of tunnel and intelligent testing of beam construction quality,and sets up a complete technical system and integrated equipment for intelligent prestressed construction of bridges based on the industrial Internet of Things(IoT).Overall,improve the quality and efficiency of bridge production,construction,and management.
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金Project supported by the Natural Science Foundation of China(No. 50378041) and the Specialized Research Fund for the Doc-toral Program of Higher Education (No. 20030487016), China
文摘A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.
基金Supported by the National Natural Science Foundation of China(50908048)the Priority Academic Program Development(PAPD)Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism.The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant.Some new load cells,test procedure,and construction technology were adopted based on the applications to different deep foundations,which could enlarge the application scopes of bi-directional loading test.A new type of bi-directional loading test for pipe pile was conducted,in which the load cell was installed and loaded after the pipe pile with special connector has been set up.Unlike the conventional bi-directional loading test,the load cell can be reused and shows an evident economic benefit.
基金Science and Technology Innovation Program of Hunan Province(No.2021RC4037)National Natural Science Foundation of China:Deformation Monitoring Key Technology and Damage Mechanism Research on Data Fusion among GB-SAR and Multi-sensors(No.41877283)Scientific Research Project of Hunan Provincial Department of Natural Resources(No.2021-18)
文摘Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.
基金This research was sponsored by the Science and Technology Project for Policy Guidance of Jiangsu Province(SZ-LYG 2020016).
文摘In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.
文摘Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.
文摘The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.
文摘The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for bridge inspection.This article summarizes the purpose of the static load test for a continuous rigid-frame railway bridge,including the required equipment,operation methods,etc.,and lists examples to analyze the operation process and precautions of static load test,hoping to provide reference information for relevant personnel.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
文摘The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.
基金the support of the Natural Science Foundation of Hubei Province(2023AFB589)Natural Science Foundation of Chongqing(Grant No.2023NSCQ-LZX0070).
文摘With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surrounding rock in deep underground engineering.The traditional rock bolt is prone to brittle fracture under high geo-stress due to its low elongation.Therefore,this work aims to develop a novel energy-absorbing bolt with constant resistance and large displacement to reinforce the surrounding rock with a risk of large deformation or rockburst.The novel energy-absorbing bolt refereed as rolling extrusion rock bolt(RE bolt)is mainly consists of sleeve tube with a variable cross-section,energy absorption slider with steel balls embedded,steel bar connected with the energy absorption slider.The rolling extrusion is adopted to produce the resistance force of the RE bolt,which avoids the sudden attenuation of resistance force and the abrasion of the energy absorption slider.The static pull test is conducted to study the resistance force and deformation characteristics of the RE bolt with different specifications.Results imply that the RE bolt has higher resistance force,larger deformation capacity and energy absorption capacity.The work of this study provides an effective solution for the reinforcement of surrounding rock in deep rock engineering.
基金financial support provided by the National Key Technology R&D Program during the 11th Five-Year Period (No. 2006BAK03B05)the National Natural Science Foundation of China (Nos.50534090, 50674090 and 50804047)+1 种基金the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety, China University of Mining and Technology (Nos.08KF14 and SKLCRSM09X04)the Scien-tific Research Foundation of China University of Mining & Technology (No.2007A001)
文摘In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.
基金Project(51078330) supported by the National Natural Science Foundation of ChinaProject(2012MS21339) supported by China Postdoctoral Science FoundationProject(2012GN012) supported by the Independent Innovation Foundation of Shandong University, China
文摘A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
基金The paper is supported by the National Natural Science Foundation of China(Nos.52178393 and 52178354)the Housing and Urban-Rural Construction Science and Technology Planning Project of Shaanxi Province(No.2019-K39)the Innovation Capability Support Plan of Shaanxi-Innovation Team(No.2020TD-005).
文摘In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors.