Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in...Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co...To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。展开更多
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ...Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.展开更多
Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudul...Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudulent websites in batches.Accurate identification of fraudulent website will effectively re-duce the risk of public victimization.Therefore,this study developed a fraudulent website template iden-tification method based on DOM structure extraction of website fingerprint features,which solves the prob-lems of single-dimension identification,low accuracy,and the insufficient generalization ability of current fraudulent website templates.This method uses an im-proved SimHash algorithm to traverse the DOM tree of a webpage,extract website node features,calcu-late the weight of each node,and obtain the finger-print feature vector of the website through dimension-ality reduction.Finally,the random forest algorithm is used to optimize the training features for the best combination of parameters.This method automati-cally extracts fingerprint features from websites and identifies website template ownership based on these features.An experimental analysis showed that this method achieves a classification accuracy of 89.8%and demonstrates superior recognition.展开更多
We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (...We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ...In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.展开更多
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho...Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.展开更多
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
Gravitational search algorithm(GSA) is a newly developed and promising algorithm based on the law of gravity and interaction between masses. This paper proposes an improved gravitational search algorithm(IGSA) to impr...Gravitational search algorithm(GSA) is a newly developed and promising algorithm based on the law of gravity and interaction between masses. This paper proposes an improved gravitational search algorithm(IGSA) to improve the performance of the GSA, and first applies it to the field of dynamic neural network identification. The IGSA uses trial-and-error method to update the optimal agent during the whole search process. And in the late period of the search, it changes the orbit of the poor agent and searches the optimal agent s position further using the coordinate descent method. For the experimental verification of the proposed algorithm,both GSA and IGSA are testified on a suite of four well-known benchmark functions and their complexities are compared. It is shown that IGSA has much better efficiency, optimization precision, convergence rate and robustness than GSA. Thereafter, the IGSA is applied to the nonlinear autoregressive exogenous(NARX) recurrent neural network identification for a magnetic levitation system.Compared with the system identification based on gravitational search algorithm neural network(GSANN) and other conventional methods like BPNN and GANN, the proposed algorithm shows the best performance.展开更多
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific...Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.展开更多
In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model ...In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model which performs control.As a frst step,the main geometric and mathematical tools used in subspace identifcation are briefly presented.In the second step,the problem of analyzing ill-conditioning matrices in the subspace identifcation method is considered.To illustrate this situation,a simulation study of an example is introduced to show the ill-conditioning in subspace identifcation.Algorithms numerical subspace state space system identifcation(N4SID)and multivariable output error state space model identifcation(MOESP)are considered to study,the parameters estimation while using the induction motor model,in simulation(Matlab environment).Finally,we show the inadequacy of the oblique projection and validate the efectiveness of the orthogonal projection approach which is needed in ill-conditioning;a real application dealing with induction motor parameters estimation has been experimented.The obtained results proved that the algorithm based on orthogonal projection MOESP,overcomes the situation of ill-conditioning in the Hankel s block,and thereby improving the estimation of parameters.展开更多
Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation...Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation (ALAD) algorithm is proposed in this paper. The objective function of ALAD is constructed by introducing a deterministic function to approximate the absolute value function. Based on the function, the recursive equations for parameter identification are derived using Gauss-Newton iterative algorithm without any simplification. This algorithm has advantages of simple calculation and easy implementation, and it has second order convergence speed. Compared with the LS method, the new algorithm has better robustness when disorder and peak noises exist in the measured data. Simulation results show the efficiency of the proposed method.展开更多
In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. Th...In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.展开更多
By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identific...By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.展开更多
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo...A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.展开更多
Noise pollution has become increasingly severe around the world due to fast urbanization. How to soundproof windows from outside noise is of significant interest for both academia and industry. This paper reports an e...Noise pollution has become increasingly severe around the world due to fast urbanization. How to soundproof windows from outside noise is of significant interest for both academia and industry. This paper reports an experimental implementation of normalized minmax active noise control (ANC) algorithm on an open window system, where identifying the model of acoustic sound paths plays a central role. By doing this, traffic noise is attenuated by the ANC system, leading to a relatively quiet indoor environment, while the natural lighting and ventilation functions of a window are remained. Our experiments show that an average of 19 dB(A) noise reduction is achieved.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62303197,62273214)the Natural Science Foundation of Shandong Province(ZR2024MFO18).
文摘Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金the Beijing Natural Science Foundation(Grant No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。
基金Supported by National Key R&D Program of China(Grant No.2022YFB3404101)National Natural Science Foundation of China(Grant Nos.52375018,92148301)。
文摘Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.
基金This research is a phased achievement of The National Social Science Fund of China(23BGL272).
文摘Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudulent websites in batches.Accurate identification of fraudulent website will effectively re-duce the risk of public victimization.Therefore,this study developed a fraudulent website template iden-tification method based on DOM structure extraction of website fingerprint features,which solves the prob-lems of single-dimension identification,low accuracy,and the insufficient generalization ability of current fraudulent website templates.This method uses an im-proved SimHash algorithm to traverse the DOM tree of a webpage,extract website node features,calcu-late the weight of each node,and obtain the finger-print feature vector of the website through dimension-ality reduction.Finally,the random forest algorithm is used to optimize the training features for the best combination of parameters.This method automati-cally extracts fingerprint features from websites and identifies website template ownership based on these features.An experimental analysis showed that this method achieves a classification accuracy of 89.8%and demonstrates superior recognition.
文摘We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
基金supported by CNPC-CZU Innovation Alliancesupported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
文摘In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.
基金funded by the National Natural Science Foundation of China under Grant No.62002103Henan Province Science Foundation for Youths No.222300420058+1 种基金Henan Province Science and Technology Research Project No.232102321064Teacher Education Curriculum Reform Research Priority Project No.2023-JSJYZD-011.
文摘Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.
基金supported by National Natural Science Foundationof China(No.2011ZX05021-003)Science Foundation of ChinaUniversity of Petroleum
文摘Gravitational search algorithm(GSA) is a newly developed and promising algorithm based on the law of gravity and interaction between masses. This paper proposes an improved gravitational search algorithm(IGSA) to improve the performance of the GSA, and first applies it to the field of dynamic neural network identification. The IGSA uses trial-and-error method to update the optimal agent during the whole search process. And in the late period of the search, it changes the orbit of the poor agent and searches the optimal agent s position further using the coordinate descent method. For the experimental verification of the proposed algorithm,both GSA and IGSA are testified on a suite of four well-known benchmark functions and their complexities are compared. It is shown that IGSA has much better efficiency, optimization precision, convergence rate and robustness than GSA. Thereafter, the IGSA is applied to the nonlinear autoregressive exogenous(NARX) recurrent neural network identification for a magnetic levitation system.Compared with the system identification based on gravitational search algorithm neural network(GSANN) and other conventional methods like BPNN and GANN, the proposed algorithm shows the best performance.
文摘Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
基金supported by the Ministry of Higher Education and Scientific Research of Tunisia
文摘In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model which performs control.As a frst step,the main geometric and mathematical tools used in subspace identifcation are briefly presented.In the second step,the problem of analyzing ill-conditioning matrices in the subspace identifcation method is considered.To illustrate this situation,a simulation study of an example is introduced to show the ill-conditioning in subspace identifcation.Algorithms numerical subspace state space system identifcation(N4SID)and multivariable output error state space model identifcation(MOESP)are considered to study,the parameters estimation while using the induction motor model,in simulation(Matlab environment).Finally,we show the inadequacy of the oblique projection and validate the efectiveness of the orthogonal projection approach which is needed in ill-conditioning;a real application dealing with induction motor parameters estimation has been experimented.The obtained results proved that the algorithm based on orthogonal projection MOESP,overcomes the situation of ill-conditioning in the Hankel s block,and thereby improving the estimation of parameters.
基金supported by Important National Science & Technology Specific Projects (No.2011ZX05021-003)
文摘Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation (ALAD) algorithm is proposed in this paper. The objective function of ALAD is constructed by introducing a deterministic function to approximate the absolute value function. Based on the function, the recursive equations for parameter identification are derived using Gauss-Newton iterative algorithm without any simplification. This algorithm has advantages of simple calculation and easy implementation, and it has second order convergence speed. Compared with the LS method, the new algorithm has better robustness when disorder and peak noises exist in the measured data. Simulation results show the efficiency of the proposed method.
基金This work was supported by the National Natural Science Foundation of China (No. 60574051).
文摘In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.
文摘By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B1111200001)the Key project of monitoring,early warning and prevention of major natural disasters of China(Grant No.2019YFC1510304)+1 种基金the S&T Program of Hebei(Grant No.19275408D)the Scientific Research Projects of Weather Modification in Northwest China(Grant No.RYSY201905).
文摘A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.
文摘Noise pollution has become increasingly severe around the world due to fast urbanization. How to soundproof windows from outside noise is of significant interest for both academia and industry. This paper reports an experimental implementation of normalized minmax active noise control (ANC) algorithm on an open window system, where identifying the model of acoustic sound paths plays a central role. By doing this, traffic noise is attenuated by the ANC system, leading to a relatively quiet indoor environment, while the natural lighting and ventilation functions of a window are remained. Our experiments show that an average of 19 dB(A) noise reduction is achieved.