This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) re...The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.展开更多
A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previ...A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.展开更多
In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs...In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.展开更多
High-resolution 3D printing,particularly electrohydrodynamic(EHD)printing,represents a transformative approach for advanced manufacturing applications,including wearable electronics,bioelectronics,and soft robotics.De...High-resolution 3D printing,particularly electrohydrodynamic(EHD)printing,represents a transformative approach for advanced manufacturing applications,including wearable electronics,bioelectronics,and soft robotics.Despite its potential,EHD printing faces challenges such as complex waveform control,limited material compatibility,satellite droplet formation,and continuous charge accumulation.To address these issues,the use of pulse-width modulation(PWM)control is proposed to enhance EHD printing performance.The influence of duty cycles and pulse subdivisions on EHD printing was systematically investigated through experiments and simulations,analyzing their effects on jetting dynamics,droplet formation,charge accumulation,and line quality.The results demonstrate that PWM modulation significantly improves jetting stability,reduces droplet diameter by up to 25%,minimizes satellite droplet formation,and effectively mitigates charge accumulation.Furthermore,PWM control was shown to facilitate the production of high-quality patterns.Notably,the proposed PWM approach is compatible with existing waveform control setups,offering enhanced precision and stability without requiring substantial modifications.These findings underscore the potential of PWM-controlled EHD printing for achieving high-resolution,versatile manufacturing in electronics and functional device production.展开更多
面向低地球轨道(low earth orbit,LEO)卫星服务性能提升,针对LEO导航信号波形研究现状进行了综述,对比分析了基于线性调频(linear frequency modulation,LFM)的LEO导航信号结构,研究其多址实现和参数估计方法.总结LEO导航信号波形设计方...面向低地球轨道(low earth orbit,LEO)卫星服务性能提升,针对LEO导航信号波形研究现状进行了综述,对比分析了基于线性调频(linear frequency modulation,LFM)的LEO导航信号结构,研究其多址实现和参数估计方法.总结LEO导航信号波形设计方向,得知利用伪随机扩频码调制的LFM复合信号是一种较优的信号结合方式,未来可在此基础上进一步加强多址性能及改进参数估计方法.展开更多
针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有...针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。展开更多
针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计...针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。展开更多
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60977005)
文摘The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
文摘A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127010)
文摘In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.
基金supported by the National Natural Science Foundation of China(No.U24B2053,52035010)in part by Shaanxi Key Industry Chain Project under Grant 2020ZDLGY14-08+4 种基金in part by the National 111 Project under Grant B14042in part by Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0407 and 2023-JC-YB-320)in part by General Program of National Natural Science Foundation of China(No.52275372)in part by the Aeronautical Science Foundation of China(Grant Nos.20230018081023)in part by National Natural Science Foundation of China grant(Grant Nos.52405411).
文摘High-resolution 3D printing,particularly electrohydrodynamic(EHD)printing,represents a transformative approach for advanced manufacturing applications,including wearable electronics,bioelectronics,and soft robotics.Despite its potential,EHD printing faces challenges such as complex waveform control,limited material compatibility,satellite droplet formation,and continuous charge accumulation.To address these issues,the use of pulse-width modulation(PWM)control is proposed to enhance EHD printing performance.The influence of duty cycles and pulse subdivisions on EHD printing was systematically investigated through experiments and simulations,analyzing their effects on jetting dynamics,droplet formation,charge accumulation,and line quality.The results demonstrate that PWM modulation significantly improves jetting stability,reduces droplet diameter by up to 25%,minimizes satellite droplet formation,and effectively mitigates charge accumulation.Furthermore,PWM control was shown to facilitate the production of high-quality patterns.Notably,the proposed PWM approach is compatible with existing waveform control setups,offering enhanced precision and stability without requiring substantial modifications.These findings underscore the potential of PWM-controlled EHD printing for achieving high-resolution,versatile manufacturing in electronics and functional device production.
文摘面向低地球轨道(low earth orbit,LEO)卫星服务性能提升,针对LEO导航信号波形研究现状进行了综述,对比分析了基于线性调频(linear frequency modulation,LFM)的LEO导航信号结构,研究其多址实现和参数估计方法.总结LEO导航信号波形设计方向,得知利用伪随机扩频码调制的LFM复合信号是一种较优的信号结合方式,未来可在此基础上进一步加强多址性能及改进参数估计方法.
文摘针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。
文摘针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。