期刊文献+
共找到12,830篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Channel Multi-Step Spectrum Prediction Using Transformer and Stacked Bi-LSTM
1
作者 Pan Guangliang Li Jie Li Minglei 《China Communications》 2025年第5期1-13,共13页
Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasiz... Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasizes the need for more advanced solutions.In this paper,we propose a new multichannel multi-step spectrum prediction method using Transformer and stacked bidirectional LSTM(Bi-LSTM),named TSB.Specifically,we use multi-head attention and stacked Bi-LSTM to build a new Transformer based on encoder-decoder architecture.The self-attention mechanism composed of multiple layers of multi-head attention can continuously attend to all positions of the multichannel spectrum sequences.The stacked Bi-LSTM can learn these focused coding features by multi-head attention layer by layer.The advantage of this fusion mode is that it can deeply capture the long-term dependence of multichannel spectrum data.We have conducted extensive experiments on a dataset generated by a real simulation platform.The results show that the proposed algorithm performs better than the baselines. 展开更多
关键词 multi-head attention spectrum prediction stacked Bi-LSTM TRANSFORMER
在线阅读 下载PDF
A Novel Stacked Network Method for Enhancing the Performance of Side-Channel Attacks
2
作者 Zhicheng Yin Lang Li Yu Ou 《Computers, Materials & Continua》 2025年第4期1001-1022,共22页
The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite ... The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite the increasing number of studies,the problem of model overfitting.Recent research mainly focuses on exploring hyperparameters and network architectures,while offering limited insights into the effects of external factors on side-channel attacks,such as the number and type of models.This paper proposes a Side-channel Analysis method based on a Stacking ensemble,called Stacking-SCA.In our method,multiple models are deeply integrated.Through the extended application of base models and the meta-model,Stacking-SCA effectively improves the output class probabilities of the model,leading to better generalization.Furthermore,this method shows that the attack performance is sensitive to changes in the number of models.Next,five independent subsets are extracted from the original ASCAD database as multi-segment datasets,which are mutually independent.This method shows how these subsets are used as inputs for Stacking-SCA to enhance its attack convergence.The experimental results show that Stacking-SCA outperforms the current state-of-the-art results on several considered datasets,significantly reducing the number of attack traces required to achieve a guessing entropy of 1.Additionally,different hyperparameter sizes are adjusted to further validate the robustness of the method. 展开更多
关键词 Side-channel analysis deep learning stackING ensemble learning model generalization
在线阅读 下载PDF
Electrochemical-driven activation by stacked layered sulfur-carbon anode for fast and stable sodium storage
3
作者 Huijuan Zhu Qiming Liu +1 位作者 Jie Wang Han Su 《Journal of Energy Chemistry》 2025年第8期819-831,共13页
Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered su... Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)). 展开更多
关键词 Heteroatom-doping stacked layered structure Cu current collector Electrochemical activation Sodium-ion batteries
在线阅读 下载PDF
An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks
4
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Mohammed K.Alzaylaee Syed Umar Amin Zafar Iqbal Khan 《Computers, Materials & Continua》 2025年第11期3457-3484,共28页
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st... Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats. 展开更多
关键词 Intrusion detection auto encoder stacked ensemble WUSTL-EHMS 2020 dataset class imbalance XGBoost
在线阅读 下载PDF
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
5
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
基于动态Stacked-GBDT算法的数据资源价值评估方法研究 被引量:14
6
作者 沈俊鑫 赵雪杉 《科技管理研究》 CSSCI 北大核心 2023年第1期53-61,共9页
针对现有的数据资源价值评估与定价方法主观性强、定量标准缺乏的问题,提出基于模型堆叠集成GBDT(Stacked-GBDT)算法的数据资源价值评估方法。首先,基于敏感性分析,从数据自身和市场两个维度归纳并建立了数据资源价值评估指标体系;然后... 针对现有的数据资源价值评估与定价方法主观性强、定量标准缺乏的问题,提出基于模型堆叠集成GBDT(Stacked-GBDT)算法的数据资源价值评估方法。首先,基于敏感性分析,从数据自身和市场两个维度归纳并建立了数据资源价值评估指标体系;然后,基于GBDT机器学习算法与Stacking集成学习算法,提出了基于StackedGBDT的数据资源价值评估算法,并与Random Forest和XGBoost算法进行对比以验证所提方法的正确性及有效性;最后,应用Stacked-GBDT模型对数据集进行动态定价。结果表明,Stacked-GBDT算法构建的数据资源价值评估模型可为数据价值测算及动态定价提供精确可靠的依据与支撑。 展开更多
关键词 数据资源 动态stacking 数据价值评估 机器学习 集成学习
在线阅读 下载PDF
基于BERT_Stacked LSTM的农业病虫害问句分类方法 被引量:7
7
作者 李林 刁磊 +3 位作者 唐詹 柏召 周晗 郭旭超 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期172-177,共6页
为解决农业病虫害问句分类过程中存在公开数据集较少、文本较短、特征稀疏、隐含语义信息较难学习等问题,以火爆农资招商网为数据源,构建了用于农业病虫害问句分类的数据集,提出了一种用于农业病虫害问句分类的深度学习模型BERT;tacked ... 为解决农业病虫害问句分类过程中存在公开数据集较少、文本较短、特征稀疏、隐含语义信息较难学习等问题,以火爆农资招商网为数据源,构建了用于农业病虫害问句分类的数据集,提出了一种用于农业病虫害问句分类的深度学习模型BERT;tacked LSTM。首先,BERT部分获取各个问句的字符级语义信息,生成了包含句子级特征信息的隐藏向量。然后,使用堆叠长短期记忆网络(Stacked LSTM)学习到隐藏的复杂语义信息。实验结果表明,与其他对比模型相比,本文模型对农业病虫害问句分类更具优势,F1值达到了95.76%,并在公开通用领域数据集上进行了测试,F1值达到了98.44%,表明了模型具有较好的的泛化性。 展开更多
关键词 农业病虫害 问句分类 BERT stacked LSTM
在线阅读 下载PDF
0.13 μm CMOS Stacked-FET两级功率放大器设计 被引量:3
8
作者 王坤 程新红 +3 位作者 王林军 徐大伟 张专 李新昌 《半导体技术》 CAS CSCD 北大核心 2016年第2期102-106,共5页
基于TSMC 0.13μm CMOS工艺设计了一款适用于无线传感网络、工作频率为300~400 MHz的两级功率放大器。功率放大器驱动级采用共源共栅结构,输出级采用了3-stack FET结构,采用线性化技术改进传统偏置电路,提高了功率放大器线性度。电源电... 基于TSMC 0.13μm CMOS工艺设计了一款适用于无线传感网络、工作频率为300~400 MHz的两级功率放大器。功率放大器驱动级采用共源共栅结构,输出级采用了3-stack FET结构,采用线性化技术改进传统偏置电路,提高了功率放大器线性度。电源电压为3.6 V,芯片面积为0.31 mm×0.35 mm。利用Cadence Spectre RF软件工具对所设计的功率放大器电路进行仿真,结果表明,工作频率为350 MHz时,功率放大器的饱和输出功率为24.2 d Bm,最大功率附加效率为52.5%,小信号增益达到38.15 d B。在300~400 MHz频带内功率放大器的饱和输出功率大于23.9 d Bm,1 d B压缩点输出功率大于22.9 d Bm,最大功率附加效率大于47%,小信号增益大于37 d B,增益平坦度小于±0.7 d B。 展开更多
关键词 CMOS 功率放大器 多管级联结构 线性化 无线传感网络
原文传递
基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用 被引量:2
9
作者 罗水亮 漆影强 +4 位作者 唐松 阮基富 高达 刘乾乾 李生 《特种油气藏》 北大核心 2025年第4期58-67,共10页
针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂... 针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂岩性的识别准确性和稳定性。相比传统方法,该模型能够更有效地捕捉测井数据的非线性关系,并降低不同岩性类别间的预测混淆度。研究结果表明:该方法在四川盆地川中地区碳酸盐岩储层的岩性识别精度达到96%,较传统模型提升6个百分点,且平均相对误差更低,预测效果更优。改进的Stacking算法结合高效计算框架,可显著提升训练和预测效率,使岩性识别更加高效、可靠。该方法可有效地识别复杂岩性,为碳酸盐岩储层岩性识别提供参考。 展开更多
关键词 stackING 集成学习 特征加权 碳酸盐岩 岩性识别
在线阅读 下载PDF
基于stacking融合机制的自动驾驶伦理决策模型 被引量:2
10
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
A Frequency-Independent Equivalent Circuit for High-k Stacked Monolithic Transformers
11
作者 夏峻 王志功 李伟 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第8期1461-1464,共4页
A new 2-Π lumped element equivalent circuit model for high-k stacked on-chip transformers is proposed. The model parameters are extracted with high precision, mainly based on analytical methods. The developed model e... A new 2-Π lumped element equivalent circuit model for high-k stacked on-chip transformers is proposed. The model parameters are extracted with high precision, mainly based on analytical methods. The developed model enables fast and accurate time domain transient analysis and noise analysis in RFIC simulation since all elements in the model are fre- quency independent. The validity of the proposed model has been demonstrated by a fabricated monolithic stacked trans- former in TSMC's 0.13μm mixed-signal (MS)/RF CMOS' process. 展开更多
关键词 HIGH-K stacked on-chip transformer frequency-independent equivalent circuit
在线阅读 下载PDF
基于改进Stacking融合模型的储层参数预测方法 被引量:1
12
作者 霍凤财 李青志 +1 位作者 董宏丽 陈怡 《地球物理学进展》 北大核心 2025年第2期691-704,共14页
准确预测储层孔隙度和渗透率对于储层评价具有重要的意义.对于储层参数的计算,传统的经验公式法仍具有较大误差,为了提高储层参数的预测精度并且提高模型的泛化能力,本文提出基于改进Stacking融合模型的集成学习算法,以不同算法对数据... 准确预测储层孔隙度和渗透率对于储层评价具有重要的意义.对于储层参数的计算,传统的经验公式法仍具有较大误差,为了提高储层参数的预测精度并且提高模型的泛化能力,本文提出基于改进Stacking融合模型的集成学习算法,以不同算法对数据观测和训练角度的不同作为基础原理,充分发挥模型的优势.首先,在传统Stacking集成学习模型的基础上,优化模型对第一层基学习器的输出结果,针对可能存在数据划分不均,而导致预测效果不佳的情况,根据基模型的测试精度对预测结果进行加权平均,得到结果作为第二层的特征;其次,针对新的组合训练集可能会丢失部分原始训练集中的信息,将原始数据集也作为次级学习器训练的一部分,使得元学习器学习到原始训练集与新训练集之间的隐含关系,从而提升模型预测效果;最后,通过Stacking融合模型将相互独立的各模型进行融合,增强模型泛化性.与传统Stacking集成学习模型相比,改进模型在孔隙度和渗透率的均方根误差预测上分别降低了7.7%和7.1%,验证了该模型具有良好的预测性能. 展开更多
关键词 参数预测 孔隙度 渗透率 stacking融合模型 集成学习
原文传递
Stacking算法对凝给水系统故障诊断的适用性研究 被引量:1
13
作者 陈砚桥 孙彤 顾任利 《舰船科学技术》 北大核心 2025年第1期138-142,共5页
针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状... 针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状,以传统单一机器学习算法为基础,通过拓展建立针对Stacking算法的多分类器性能评价指标,准确寻找运行参数和故障之间的映射关系,解决了多分类器性能评价难题。并利用样本数据设计出比较Stacking算法和单一算法综合性能的试验方法,验证了Stacking模型在凝给水系统故障诊断任务中的适用性和优越性。 展开更多
关键词 凝给水系统 stacking算法 故障诊断
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
14
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 stacking集成学习
在线阅读 下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测 被引量:1
15
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 stacking集成学习 金豺优化算法 复合指标
原文传递
一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法
16
作者 黄鑫 叶健 +3 位作者 刘骋冰 曾秋雨 郭万新 郭志凯 《测绘学报》 北大核心 2025年第10期1826-1840,共15页
滑坡易发性预测及诱因分析对于制定科学有效的滑坡灾害防治策略至关重要。然而,当前仍缺乏能够兼具高预测精度与可解释性的滑坡预测模型。为此,本文提出了一种基于可解释性增强的集成学习方法,构建Stacking-SHAP模型,以提升滑坡易发性... 滑坡易发性预测及诱因分析对于制定科学有效的滑坡灾害防治策略至关重要。然而,当前仍缺乏能够兼具高预测精度与可解释性的滑坡预测模型。为此,本文提出了一种基于可解释性增强的集成学习方法,构建Stacking-SHAP模型,以提升滑坡易发性预测的准确性与诱因分析的可靠性。本文方法采用Stacking集成框架,融合XGBoost、CatBoost、LightGBM、逻辑回归(LR)、随机森林(RF)等多种机器学习分类器,在保证预测精度的基础上,引入SHAP(shapley additive explanations)算法,以增强模型的可解释性。试验结果表明,Stacking-SHAP模型的AUC值达到0.920,显著优于单一分类器模型,如XGBoost(0.893)、CatBoost(0.894)、LightGBM(0.879)、RF(0.859)和LR(0.794)。更重要的是,相较于SHAP集成单一机器学习模型,Stacking-SHAP可解释增强集成模型在滑坡诱因分析方面表现出更优的综合性能,提高了滑坡致灾因素分析的可信度。整体而言,本文方法兼具高精度预测与高可靠性解释,为滑坡易发性预测与诱因分析提供了一种创新性方法,在滑坡防治与减灾领域具有重要的理论与应用价值。 展开更多
关键词 滑坡易发性 地理大数据 stacking算法 SHAP算法 滑坡诱因分析
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
17
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stackING 集成模型 客观评价
在线阅读 下载PDF
基于高光谱数据和Stacking集成学习算法的金矿品位快速反演
18
作者 毛亚纯 夏安妮 +4 位作者 曹旺 刘晶 文杰 贺黎明 陈煊赫 《光谱学与光谱分析》 北大核心 2025年第7期2061-2067,共7页
金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药... 金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药剂污染等多种问题,无法实现基于实时品位信息的矿石品位与选矿方法的自动化调整。相比之下,可见光-近红外光谱分析法因其高效、绿色环保及原位测定等优势,逐渐成为估算矿区金属品位的有效替代方法。为此以中国辽宁省二道沟、凌源和排山楼三个金矿为研究区,共采集了389个金矿样本,以SVC便携式地物光谱仪测试的高光谱数据和化学分析数据为数据源。首先对原始光谱数据进行Savitzky-Golay平滑(SG)处理,并分析金矿的光谱特征,发现反射率与金品位具有一定相关性,且在455 nm处具有金的吸收特征,基于此,利用主成分分析法(PCA)、等距特征映射(ISOMAP)和局部线性嵌入(LLE)算法对原始光谱数据进行降维处理,对应降维结果的维数分别为6,5,5。最后基于随机森林(RF)、极端随机树(ET)、决策树(DT)、梯度提升树(GBDT)和自适应增强(Adaboost)、极端梯度提升树(XGBoost)和Stacking集成学习算法对降维后的数据建立了金品位预测模型。研究结果表明,Stacking集成学习方法在各方面性能均优于单一模型,其中LLE-Stacking组合模型的精度最高,预测值与真实值的R^(2)为0.972,RPD为5.935,平均相对误差为0.231。利用本方法可以快速准确预测矿粉中金的品位,相比于传统模型的品位反演精度有明显的提升,为矿山金品位的快速、原位测定提供了新的技术手段,对金矿的高效开采具有重要意义。 展开更多
关键词 金矿品位反演 可见光-近红外光谱 降维 stacking集成学习
在线阅读 下载PDF
基于Stacking集成学习的空管危险源数据分类
19
作者 王洁宁 闫思卿 孙禾 《科学技术与工程》 北大核心 2025年第20期8583-8594,共12页
在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下... 在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下迫切需要开发适用于空管系统的高效分类方法,以提高飞行安全水平。针对单一学习器用于空管危险源文本分类存在的类别分布较多,难以捕捉类别数据不平衡时的文本特征导致预测精度下降的问题,提出基于Stacking训练思想的、两次加权的改进集成模型。首先,参考双防机制对危险源和安全隐患完成类别划分;再采用词频-逆文档频率(term frequency-inverse document frequency, TF-IDF)算法提取预处理后的危险源文本特征完成向量化,并利用合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)和自适应合成过采样算法(adaptive synthetic sampling approach, ADASYN)分别随机生成向量化后的少数类文本,使文本数据集的类别分布趋于平衡;再从基学习器每折交叉验证的F1分数加权和基学习器之间敏感性评估机制动态加权两方面改进Stacking集成模型,提高类别不平衡危险源文本的分类性能。在所构建的数据集上的实验结果表明:相较于SMOTE+改进集成模型,ADASYN+改进集成模型的精确率、召回率和F1分数分别提升0.9、1.1和1.0个百分点,较好地抑制处理多数类别过拟合的问题,实验结果验证了所提算法的有效性。 展开更多
关键词 双防机制 空管危险源 文本分类 自适应合成过采样算法(ADASYN) stacking集成模型
在线阅读 下载PDF
基于遥感多参数和Stacking集成学习的冬小麦单产估测
20
作者 王鹏新 王静怡 +3 位作者 郭丰玮 刘峻明 李红梅 叶昕 《农业机械学报》 北大核心 2025年第11期369-377,共9页
为探究模型融合在估产领域的应用潜力,实现高精度冬小麦单产估测和预测,本文以陕西省关中平原为研究区域,选取与冬小麦长势密切相关的旬尺度叶面积指数(LAI)、光合有效辐射吸收比率(FPAR)和条件植被温度指数(VTCI)作为遥感特征参数,构... 为探究模型融合在估产领域的应用潜力,实现高精度冬小麦单产估测和预测,本文以陕西省关中平原为研究区域,选取与冬小麦长势密切相关的旬尺度叶面积指数(LAI)、光合有效辐射吸收比率(FPAR)和条件植被温度指数(VTCI)作为遥感特征参数,构建基于多模型融合的Stacking集成学习估产模型。考虑不同机器学习算法训练原理差异,将长短期记忆网络(LSTM)、支持向量机(SVM)、弹性网络回归(ENet)、极端梯度提升机(XGBoost)、梯度提升决策树(GBDT)、随机森林(RF)作为备选基模型。基于皮尔逊相关系数量化各模型预测误差之间的相关性,选择相关系数平均值最低的LSTM、SVM、ENet和XGBoost作为基模型。以每个基模型预测结果作为元特征,并将线性回归模型作为元模型对元特征进行拟合,构建Stacking冬小麦估产集成模型。结果表明,相较于精度最高的单一估产模型SVM,Stacking集成模型具有更高的估测精度(R2为0.67、RMSE为520.50 kg/hm^(2)、MAPE为9.21%),其R2提升0.03,RMSE和MAPE分别下降26.28 kg/hm^(2)、0.83个百分点,因此,Stacking集成估产模型能够融合单个估产模型优势,进而获得更准确的估产结果。 展开更多
关键词 冬小麦 估产 stacking集成学习 条件植被温度指数 叶面积指数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部