The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T...The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.展开更多
Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals(vdW)heterostructures constructed of inorganic nanostructures and organic materials.However,the effect of mole...Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals(vdW)heterostructures constructed of inorganic nanostructures and organic materials.However,the effect of molecular stacking configurations on charge transfer dynamics is less understood.In this study,we demonstrated the tunability of interfacial charge separation in a type-Ⅱ heterojunction between monolayer(ML)WS_(2) and an organic semiconducting molecule[2-(3″′,4′-dimethyl-[2,2′:5′,2′:5″,2″′-quaterthiophen]-5-yl)ethan-1-ammonium halide(4Tm)]by rational design of relative stacking configurations.The assembly between ML-WS_(2) and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a selfaggregation state.In contrast,a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice.The face-to-face stacking was proved to be more favorable for hole transfer from WS_(2) to 4Tm and led to interlayer excitons(IEs)emission.Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs.On the other hand,the face-to-edge stacking resulted in much slower hole transfer without formation of IEs.This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS_(2),leading to the formation of negative trions.These investigations offer important fundamental insights into the charge transfer processes at organic−inorganic interfaces.展开更多
基金the aid of Research and Development Fund-Seed Money provided by Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology。
文摘The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.
基金primarily supported by the US Department of Energy,Office of Basic Energy Sciences under award number DE-SC0022082support from National Science Foundation under award number 2143568-DMR.
文摘Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals(vdW)heterostructures constructed of inorganic nanostructures and organic materials.However,the effect of molecular stacking configurations on charge transfer dynamics is less understood.In this study,we demonstrated the tunability of interfacial charge separation in a type-Ⅱ heterojunction between monolayer(ML)WS_(2) and an organic semiconducting molecule[2-(3″′,4′-dimethyl-[2,2′:5′,2′:5″,2″′-quaterthiophen]-5-yl)ethan-1-ammonium halide(4Tm)]by rational design of relative stacking configurations.The assembly between ML-WS_(2) and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a selfaggregation state.In contrast,a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice.The face-to-face stacking was proved to be more favorable for hole transfer from WS_(2) to 4Tm and led to interlayer excitons(IEs)emission.Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs.On the other hand,the face-to-edge stacking resulted in much slower hole transfer without formation of IEs.This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS_(2),leading to the formation of negative trions.These investigations offer important fundamental insights into the charge transfer processes at organic−inorganic interfaces.