期刊文献+
共找到11,735篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of heavy reduction during solidification process of billets based on 3D reconstruction of dendrites 被引量:1
1
作者 Yi Nian You-cheng Zong +3 位作者 Chao-jie Zhang Xin-yu Tang Jia-le Li Li-qiang Zhang 《Journal of Iron and Steel Research International》 2025年第6期1596-1611,共16页
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den... The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation. 展开更多
关键词 solidification Dendritic growth 3D reconstruction Heavy reduction Central segregation
原文传递
Revealing the solidification microstructure evolution and strengthening mechanisms of additive-manufactured W-FeCrCoNi alloy:Experiment and simulation 被引量:1
2
作者 Yuan Yuan Yong Han +6 位作者 Kai Xu Sisi Tang Yaohua Zhang Yaozha Lv Yihan Yang Xue Jiang Keke Chang 《Journal of Materials Science & Technology》 2025年第1期302-313,共12页
Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy ... Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy alloy(HEA)binder via the laser metal deposition(LMD)technique.Due to the distinctive thermal cycle and rapid cooling rate,the as-deposited alloys exhibit microstructures with hy-poeutectic,eutectic-like,and spot-like characteristics.To elucidate this phenomenon,the solidification paths were delineated and analyzed by combining microstructural characterization and phase equilib-rium simulation.Theμphase precipitated out from the supersaturated solid solution,thereby nucleating massive dislocations on the FeCrCoNi matrix to increase the work hardening rate.Furthermore,theμphase formed an ultrafine intermetallic compound(IMC)layer around the W grain,reducing the hole or crack between the W grain and FeCrCoNi matrix.Attributed to the precipitation strengthening,the solid solution of the FeCrCoNi binder,along with the load-bearing strength of W,the developed alloy achieved ultrahigh compressive stress and strain of 2047 MPa and 32%respectively at room temperature.These findings contribute valuable insights to the advancement of additive manufacturing for tungsten alloys,leveraging their excellent properties. 展开更多
关键词 Tungsten heavy alloy Laser metal deposition High entropy alloy binder Strength solidification microstructure
原文传递
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:1
3
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel As-cast microstructure High-temperature confocal laser scanning microscopy solidification mode FERRITE Characterization
原文传递
Lignin-based carbon fibres:Effect of bio-polyamide on oxidative thermal stabilisation of lignin
4
作者 Baljinder K.Kandola Muhammed Hajee +1 位作者 Annan Xiang A.Richard Horrocks 《Journal of Materials Science & Technology》 2025年第4期191-208,共18页
Carbon fibres have been produced from hydroxypropyl-modified lignin(TcC)/bio-based polyamide 1010(PA1010)blended filaments.Two grades of PA1010,with different molecular weights and rheological properties,were used for... Carbon fibres have been produced from hydroxypropyl-modified lignin(TcC)/bio-based polyamide 1010(PA1010)blended filaments.Two grades of PA1010,with different molecular weights and rheological properties,were used for blending with TcC.An oxidative thermal stabilisation step was used prior to carbonisation in an inert atmosphere to prevent the fusion of the filaments during the latter step.Thermal stabilisation was not possible using a one-step stabilisation process reported in the literature for lignin and other lignin/synthetic polymer blends.As a consequence,a cyclic process involving an additional isothermal phase at a lower temperature than the precursor filaments’melting point,was introduced to increase the cross-linking reactions between the lignin and polyamide.Thermally stabilised filaments were characterised by DSC,TGA,TGA-FTIR,ATR,and SEM techniques.Polymer rheology and heating rate used during thermal stabilisation influenced the thermal stabilisation process and mechanical properties of the derived filaments.Thermally stabilised filaments using optimised conditions(heating in the air atmosphere at 0.25℃/min to 180℃;isothermal for 1 h,cooling back down to ambient at 5℃/min;heating to 250℃ at 0.25℃/min,isothermal for 2 h)could be successfully carbonised.Carbon fibres pro-duced had void-free morphologies and mechanical properties comparable to similarly thermally stabilised and carbonised polyacrylonitrile(PAN)filaments. 展开更多
关键词 LIGNIN POLYAMIDE Blends FILAMENTS PRECURSOR Thermal stabilisation CARBONIZATION
原文传递
Synthesis of ternary geopolymers using prediction for effective solidification of mercury in tailings
5
作者 Xuan Lu Jinfa Guo +1 位作者 Fang Chen Mengkui Tian 《Journal of Environmental Sciences》 2025年第1期392-403,共12页
This study used steel slag,fly ash,and metakaolin as raw materials(SFM materials)to create silica-alumina-based geopolymers that can solidify Hg^(2+)when activated with sodiumbased water glass.The experiments began wi... This study used steel slag,fly ash,and metakaolin as raw materials(SFM materials)to create silica-alumina-based geopolymers that can solidify Hg^(2+)when activated with sodiumbased water glass.The experiments began with a triangular lattice point mixing design experiment,and the results were fitted,analyzed,and predicted.The optimum SFM material mass ratio was found to be 70%steel slag,25%fly ash,and 5%metakaolin.The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg^(2+)of geosynthetics with different modulus.The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings.The inclusion of 50%SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%.The mercury concentration of herbaceous plant samples was also reduced by 78%.It indicates that the SFM material can effectively attenuate the migration transformation of mercury.Finally,characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg^(2+)solidification by geopolymers generated by SFM materials.The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation,chemical bonding s,surface adsorption of Hg^(2+)and its precipitates by the geopolymer,and physical encapsulation. 展开更多
关键词 MERCURY GEOPOLYMER solidification TAILINGS
原文传递
Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys
6
作者 WANG Junyuan DU Wenhua +1 位作者 HAO Bohao WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1151-1161,共11页
By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in ... By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in both alloys across both large and small undercooling ranges.High-speed photography was used to analyze the relationship between solidification front morphology and undercooling,showing that dendrite remelting and fragmentation caused grain refinement under small undercooling,while stress-induced recrystallization is responsible under large undercooling.Microhardness testing further demonstrates a sudden drop in microhardness near the critical undercooling point,providing evidence for grain refinement due to recrystallization in large undercooling tissues. 展开更多
关键词 UNDERCOOLING MICROSTRUCTURE grain refinement solidification rate
原文传递
Influence of Undercooling on the Solidification Behaviour and Microstructure of Non-equilibrium Solidification of Cu-based Alloys
7
作者 LI Hejun AN Hongen +6 位作者 Willey Liew Yun Hsien Ismal Saad Bih Lii Chuab Nancy Julius Siambun CAO Shichao WANG Hongfu YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期610-618,共9页
The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increas... The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue. 展开更多
关键词 UNDERCOOLING MICROSTRUCTURE grain refinement solidification rate
原文传递
Exploring kink strengthening in WZ21 magnesium alloy via slow solidification and extrusion
8
作者 Drahomír Dvorský Yoshihito Kawamura +7 位作者 Shin-Ichi Inoue Soya Nishimoto JiríKubásek Anna Boukalová Miroslav Cavojský Luděk Heller Jan Duchoň Dalibor Vojtěch 《Journal of Magnesium and Alloys》 2025年第5期2155-2173,共19页
The Mg-Y-Zn magnesium alloy system is known for the presence of Long-Period Stacking Ordered(LPSO)phases that improves strength and ductility with minimal amounts of alloying elements.Even better improvements are asso... The Mg-Y-Zn magnesium alloy system is known for the presence of Long-Period Stacking Ordered(LPSO)phases that improves strength and ductility with minimal amounts of alloying elements.Even better improvements are associated with the specific microstructure known as the Mille-Feuille(MF)structure that can occur in this alloy as well after proper heat treatment.This study systematically compares the traditional ingot metallurgy method with the Bridgman method(slow cooling),coupled with diverse heat treatments and extrusion process.Microscopic analyses reveal variations in the presence of LPSO phases,MF structure,and especially grain size,leading to divergent mechanical and corrosion properties.The Bridgman approach surprisingly stands out,ensuring superior mechanical properties due to kink and texture strengthening. 展开更多
关键词 Slow solidification EXTRUSION KINK Mechanical properties Mille-Feuille Corrosion
在线阅读 下载PDF
Modeling of microstructure and microsegregation evolution in solidification of ternary alloys
9
作者 Qiannan Yu Mengdan Hu +1 位作者 Jinyi Wu Dongke Sun 《Chinese Physics B》 2025年第5期505-515,共11页
The microstructure formed during solidification has a significant impact on the mechanical properties of materials.In this study,a two-dimensional(2D)cellular automaton(CA)-finite difference(FD)-CALPHAD model was deve... The microstructure formed during solidification has a significant impact on the mechanical properties of materials.In this study,a two-dimensional(2D)cellular automaton(CA)-finite difference(FD)-CALPHAD model was developed to simulate the formation of microstructure and solute segregation in the solidification processes of ternary alloys.In the model,dendritic growth is simulated using the CA technique,while solute diffusion is solved by the FD method,and the CALPHAD method is employed to calculate thermodynamic phase equilibrium during solidification.The CA-FD-CALPHAD coupled model is capable of reproducing the evolution of continuous nucleation and growth of grains as well as the evolution of the microstructure and solute distribution during solidification of ternary alloys.In this study,Al–Zn–Mg ternary alloy is taken as an example to simulate the growth of equiaxed and columnar grains and the columnar-to-equiaxed transition(CET)under different solidification conditions.The simulation results are compared with experimental data from the literature,showing a good agreement.Besides,the study also investigates the evolution of temperature and multicomponent solute fields during solidification and the effects of alloy composition and cooling rate on the microstructure morphology.The results reveal that the initial alloy composition and cooling rate significantly affect dendritic morphology and solute segregation.Higher initial alloy concentrations promote the growth of side branches in equiaxed grains,leading to more pronounced solute segregation between dendrites.As the cooling rate increases,the average grain size of the equiaxed grains decreases accordingly.Additionally,a higher cooling rate accelerates the columnar-to-equiaxed transition,leading to a finer grain structure. 展开更多
关键词 ternary alloys solidification DENDRITE columnar-to-equiaxed transition cellular automaton
原文传递
Numerical simulation of microstructure and microporosity morphology in directional solidification of aluminum-copper alloys:Effect of copper content and withdrawal rate
10
作者 Wei Yuan Hai-dong Zhao +3 位作者 Xu Shen Chun Zou Yuan Liu Qing-yan Xu 《China Foundry》 2025年第1期33-44,共12页
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma... Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics. 展开更多
关键词 MICROPOROSITY DENDRITES cellular automaton Al-Cu alloys directional solidification
在线阅读 下载PDF
A large-scale study on solidification of gold tailings based on microbially induced carbonate precipitation(MICP)
11
作者 Yaoting Duan Qin Yuan +1 位作者 Caiqi Yu Chunli Zheng 《Biogeotechnics》 2025年第3期10-20,共11页
One of the major challenges in the application of microbially induced carbonate precipitation(MICP)is achieving"bacteria freedom",as it necessitates a substantial volume of bacterial solutions.Nevertheless,b... One of the major challenges in the application of microbially induced carbonate precipitation(MICP)is achieving"bacteria freedom",as it necessitates a substantial volume of bacterial solutions.Nevertheless,both insitu bacterial cultivation and transportation of bacterial solutions have proven to be inefficient.In this study,we suggested the utilization of bacteria in the form of dry powder,enabling easy on-site activation and achieving a relatively high urease activity.We conducted MICP curing experiments on gold mine tailings(GMT)using steel slag(SS)as an additive.The results showed that the average unconfined compressive strength(UCS)values of the tailings treated with MICP and MICP+SS reached 0.51 and 0.71 MPa,respectively.In addition,the average leaching reduction rates of Cu,Pb,Cr,Zn,and T-CN in GMT after MICP treatment reached 98.54%,100%,70.94%,59.25%,and 98.02%,respectively,and the average reduction rates after MICP+SS treatment reached 98.77%,100%,88.03%,72.59%,and 98.63%,respectively.SEM,XRD,FT-IR analyses,and ultra-deep field microscopy results confirmed that the MICP treatment produced calcite-based calcium carbonate that filled the inter-tailing pores and cemented them together,and the hydration mechanism was the main reason for the increased curing efficiency of SS.Our research findings demonstrate that bacterial powder can efficiently achieve the objectives of heavy metal removal and tailing solidification.This approach can substantially de-crease the expenses associated with bacterial cultivation and solution transportation,thereby playing a crucial role in advancing the practical implementation of MICP. 展开更多
关键词 Gold mine tailings MICP solidification Bacterial powder
暂未订购
Multiphysics modeling of dendritic thermomechanical deformation during the directional solidification of nickel-based single-crystal superalloys
12
作者 Luwei Yang Neng Ren +2 位作者 Mingxu Xia Jun Li Jianguo Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2510-2522,共13页
Nickel-based single-crystal(SX)superalloys are the key metallic materials of aeroengines.However,thermomechanical deformation always occurs during the directional solidification of SX superalloys,negatively influencin... Nickel-based single-crystal(SX)superalloys are the key metallic materials of aeroengines.However,thermomechanical deformation always occurs during the directional solidification of SX superalloys,negatively influencing the SX structure.Casting deformation is simulated in most of the previous studies,whereas the direct simulation of dendritic thermomechanical deformation has been largely ignored,resulting in a lack of comprehensive understanding of this process.In this study,we systematically investigate dendritic thermomechanical deformation with a model coupled with dendrite growth,fluid flow,and thermomechanical deformation behavior.Results reveal that the dendritic thermomechanical deformation-induced dendrite bending is not randomly distributed but is mainly concentrated on the casting surface.The dendritic thermal stress increases as dendrite grows and accumulates after dendrite bridging.Transverse thermal contraction mainly occurs at the edge of casting in the corner,and axial thermal contraction is larger than transverse contraction.The high-stress region of the primary dendrite trunk is mainly distributed below the dendrite bridging near the solidified part,and the stress along the transverse direction reaches its maximum value on the casting surface.Stress concentrated on the casting surface is mainly attributed to variations in transverse temperature gradients caused by heat dissipation on the lateral mold wall,and inconsistent constraints in the lateral mold walls. 展开更多
关键词 dendrite growth thermal stress dendrite deformation single-crystal superalloy solidification
在线阅读 下载PDF
Modelling Microsegregation of Binary Alloy During Solidification
13
作者 Tongzhao Gong Shuting Cao +4 位作者 Weiye Hao Weiqi Fan Yun Chen Xing-Qiu Chen Dianzhong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1628-1636,共9页
This work studies the impact of the carbon diffusion on the growth kinetics of austenite and the solute segregation,by utilizing the phase-field(PF)method to simulate the solidification of a Fe-C binary alloy.It is re... This work studies the impact of the carbon diffusion on the growth kinetics of austenite and the solute segregation,by utilizing the phase-field(PF)method to simulate the solidification of a Fe-C binary alloy.It is revealed that increasing the ratio of the carbon diffusion coefficient in solid to that in liquid is advantageous in reducing the solute segregation,and a novel microsegregation model is developed based on the quantitative analysis of the results from PF simulations.The simplified one-dimensional diffusion simulation is employed to analyse the quantitative relationship between the parameters of the proposed microsegregation model and the properties of materials.The universality and reliability of the new microsegregation model are then validated by comparing with the experimental data of various alloy systems.These findings contribute to our comprehension of the fundamental theory of solidification and also provide a potential and promising approach to controlling the solidification microstructure. 展开更多
关键词 Binary alloy solidification MICROSEGREGATION Phase-field method Solid back diffusion
原文传递
Investigation of magnesium phosphate cement on river dredged sludge with varying humic acid content and solidification mechanism
14
作者 Xiaoyi Yuan Lei Peng Bing Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期573-585,共13页
This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting t... This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge. 展开更多
关键词 Sludge solidification MPC Unsaturated spontaneous imbibition Strength mechanism Humic acid
在线阅读 下载PDF
Interfacial heat transfer and solidification structure of sub-rapid solidified silicon steel using a novel droplet solidification apparatus
15
作者 Wan-lin Wang Yun-li Zhang +4 位作者 Pei-sheng Lyu Cheng Lu Kang-yan Chen Liang Hao Hua-long Li 《Journal of Iron and Steel Research International》 2025年第3期671-681,共11页
A novel droplet solidification technique was developed to emulate sub-rapid solidification and facilitate the formation of deposited films during the strip casting of silicon steels(w(Si):2.5 and 3.5 wt.%).With the in... A novel droplet solidification technique was developed to emulate sub-rapid solidification and facilitate the formation of deposited films during the strip casting of silicon steels(w(Si):2.5 and 3.5 wt.%).With the increasing number of droplet ejection experiments,the peak heat fluxes between droplet and substrate decreased firstly(1rd–5th ejection),then increased(5th–7th ejection),and finally decreased again(>7th ejection).In the first five experiments,the interfacial thermal resistance between the droplet and the substrate improved with increasing film thickness.However,at the onset of the 6th droplet ejection experiment,the deposited film initiated its melting process due to the accumulated thermal resistance,which has the potential to eradicate the cavity or air space existing between the droplet and the substrate.Consequently,the interfacial contact condition was improved gradually with the increasing melting area from 5th to 7th droplet ejection experiments,leading to an increase in heat fluxes.Increased SiO_(2) content in deposited films for 3.5 wt.%Si steel led to lower peak heat fluxes than for 2.5 wt.%Si steel.The solidification structure of the 2.5 wt.%Si steel droplet sample comprised a fine grain zone at the base,a columnar grain zone in the center,and an equiaxed grain zone at the top.However,the solidification structure of the 3.5 wt.%Si steel droplet only contained columnar grains and equiaxed grains,with a larger average grain size due to the lower interfacial heat flux. 展开更多
关键词 Silicon steel Deposited film Heat transfer Sub-rapid solidification Strip casting
原文传递
One-step synthesis of ThMn_(12)-type Sm_(0.8)Zr_(0.2)Fe_(11)SiB_(x)(x=0-0.2)ribbon magnets via rapid solidification
16
作者 Chi Zhang Hui-Dong Qian +3 位作者 Wenyun Yang Jingzhi Han Xuegang Chen Jinbo Yang 《Chinese Physics B》 2025年第7期566-571,共6页
ThMn_(12)-type iron-rich rare-earth permanent magnetic materials have garnered significant attention due to their exceptional intrinsic magnetic properties.However,challenges such as the metastable nature of the ThMn1... ThMn_(12)-type iron-rich rare-earth permanent magnetic materials have garnered significant attention due to their exceptional intrinsic magnetic properties.However,challenges such as the metastable nature of the ThMn12-type phase,excessively small single-domain grain size,and complex fabrication processes have hindered the achievement of high phase purity,uniform microstructure,and desirable extrinsic performance.In this study,we directly synthesized ThMn_(12)-type Sm_(0.8)Zr_(0.2)Fe_(11)SiB_(x)(x=0-0.2)ribbon magnets via boron doping combined with a one-step rapid solidification method.This approach not only simplifies the fabrication process but also enhances phase stability and achieves a uniform microstructure with high ThMn12-type phase purity.By optimizing the boron content and cooling rate,the resulting magnets exhibit a coercivity(H_(c))of 6222 Oe,a remanence(M_(r))of 80 emu/g,and a remanence ratio(M_(r)/M_(s))of 0.71.This work demonstrates a streamlined approach to producing high-performance ThMn12-type magnets and provides insights into their practical application potential. 展开更多
关键词 ThMn12-type permanent magnet rapid solidification phase stabilization microstructure
原文传递
Insight into effect of forced convection during slab casting on as-cast solidification structure
17
作者 Hao Geng Yun-he Chang +3 位作者 Zhuang Zhang Peng Lan Pu Wang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第6期1568-1583,共16页
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se... Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure. 展开更多
关键词 solidification structure Forced convection Electromagnetic stirring White band Dendrite deflection
原文传递
Effects of low frequency electromagnetic casting on solidification macrostructure of GH4742superalloy
18
作者 Liang Zhang Lei Wang +3 位作者 Yang Liu Xiu Song Teng Yu Ran Duan 《China Foundry》 2025年第2期195-204,共10页
The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were i... The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots. 展开更多
关键词 low frequency electromagnetic casting SUPERALLOY solidification hot cracking grain refinement
在线阅读 下载PDF
Effect of cooling rate on dendritic segregation and solidification structure of a Ni–Cr–Co–Mo based alloy
19
作者 Kun Chen Xi-kou He +2 位作者 Zheng-dong Liu Yue Zheng Jing Ma 《Journal of Iron and Steel Research International》 2025年第10期3555-3572,共18页
The cooling rate of the center and edge of vacuum induction melting(VIM)or vacuum arc remelting(VAR)ingots exhibit substantial difference,leading to markedly distinct dendritic structures and precipitates.The current ... The cooling rate of the center and edge of vacuum induction melting(VIM)or vacuum arc remelting(VAR)ingots exhibit substantial difference,leading to markedly distinct dendritic structures and precipitates.The current lack of precise predictions for dendritic segregation and the distribution of precipitates in ingot makes it difficult to determine the annealing and homogenization heat treatment process.Thus,clarifying the impact of cooling rate on the solidification behavior of alloy is significantly important.The dendritic structure and precipitation characteristics of as-cast C-HRA-3 Ni–Cr–Co–Mo-based heat-resistant alloy were investigated using Thermo-Calc thermodynamic calculations,scanning electron microscopy observations,and electron probe microanalyzer.Based on high temperature observation system,the effects of cooling rate on the dendritic structure,dendritic segregation,and precipitation in this alloy were explored.The results showed that the precipitates in the as-cast C-HRA-3 alloy primarily consist of blocky Ti(C,N)phases,large-sized Ti(C,N)–M_(6)C–M_(23)C_(6) symbiotic phases and M_(6)C–M_(23)C_(6) carbides,and small-sized dispersed M_(6)C and M_(23)C_(6) carbides surronding these symbiotic phases.The primary constituent elements of these precipitates are Mo,Cr,C,and Ti,which predominantly concentrate in the interdendritic regions of the as-cast alloy.There is a clear power-law relationship between the secondary dendrite arm spacing and the cooling rate.The dendritic segregation ratio of Mo,Cr,and Ti exhibits a piecewise functional relationship with the cooling rate,under equiaxed dendritic solidification condition.These predictive models and theoretical analyses were validated using numerical simulations and experimental results from the 200 kg grade VIM electrode. 展开更多
关键词 Ni-Cr-Co-Mo based heat resistant alloy Cooling rate solidification Diffusion Prediction model
原文传递
Effect of melt superheating on solidification microstructure and mechanical properties of K424 superalloy
20
作者 Gao-yang Jing Ao-qi Li +4 位作者 Xun Sun Lei Jin Cheng Zhou Dong-ping Zhan Ji-hang Li 《China Foundry》 2025年第3期252-262,共11页
The effect of melt superheating treatment on the solidification microstructure and mechanical properties of theγ'phase precipitation-strengthened K424 superalloy was investigated.Differential scanning calorimetry... The effect of melt superheating treatment on the solidification microstructure and mechanical properties of theγ'phase precipitation-strengthened K424 superalloy was investigated.Differential scanning calorimetry(DSC)experiments were conducted to explore the influence of melt treatment temperature on the undercooling of the superalloy.Additionally,pouring experiments were carried out to assess how alterations in both the temperature and duration of melt treatment impacted the grain size,secondary dendrite arm spacing(SDAS),elemental segregation,and mechanical properties of the alloy.Metallographic analysis,scanning electron microscopy,energy dispersive spectroscopy(EDS)and Thermo-Calc software were employed for microstructure characterization.The test specimens were subjected to tensile testing at room temperature and stress rupture testing at 975℃ under 196 MPa.The findings reveal that appropriate melt treatment conditions result in decreased grain size,refined SDAS,minimized elemental segregation,and significant improvements in mechanical properties.Specifically,the study demonstrates that a melt treatment at 1,650℃ for 5 min results in the smallest average grain size of 949μm and the smallest SDAS of 25.38μm.Furthermore,the room temperature tensile properties and creep resistance are notably affected by the melt treatment parameters.It is shown that specific melt treatment conditions,such as holding at 1,650℃ for 5 min,result in superior room temperature strength and extended stress rupture life of the K424 superalloy,while a balance between strength and stability is achieved at 1,600℃ with a holding time of 10 min.These findings offer guidance for optimizing the melt treatment parameters for the K424 superalloy,laying a foundation for further investigations. 展开更多
关键词 melt superheating K424 superalloy solidification microstructure elemental segregation mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部