期刊文献+
共找到17,002篇文章
< 1 2 250 >
每页显示 20 50 100
Shear behavior of rock joints reinforced with fully-grouted and energy-absorbing bolts subjected to shear cycles
1
作者 Hanfang Zheng Xuezhen Wu +2 位作者 Yujing Jiang Gang Wang Zhiyong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4314-4328,共15页
In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in ... In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in projects susceptible to dynamic shear loads.In laboratory experiments,fully-grouted bolts and energy-absorbing bolts were used as research objects,and artificial rock specimens with rough joints were fabricated to analyze the shear characteristics and damage mechanisms of bolted rock joints under cyclic shear conditions and different shear velocities.The results showed that as the shear rate increased,the shear strength of bolted rock joint specimens decreased.Degradation of asperities resulted in no obvious peak shear stress in the specimens.Energy-absorbing bolts exhibited greater deformation capacity,with significant necking phenomena and the ability to withstand larger shear displacements.In contrast,fully-grouted bolts,which have threaded surfaces that provide higher bonding performance,exhibited a reduced capacity for plastic deformation and were prone to breaking under smaller shear displacements.Although the shear stiffness of specimens reinforced by energy-absorbing bolts was slightly lower than that of fully-grouted bolt specimens,they demonstrated greater stability under various shear rates.The absorbed shear energy showed that energy-absorbing bolts had superior coordinated deformation capabilities,thus exhibiting greater absorbed shear energy than fully-grouted bolts.Overall,fully-grouted bolts are more suitable for projects requiring higher rock shear strength and overall stiffness.In contrast,energy-absorbing bolts are more suitable for coping with dynamic or fluctuating load conditions to maintain the relative stability of jointed rock masses. 展开更多
关键词 Energy-absorbing bolt Fully-grouted bolt Shear rate Cyclic shear test Shear absorbed energy
在线阅读 下载PDF
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
2
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 Blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
Effects of the Tensile and Shear Properties of Bolts on the Shear Properties of Bolted Rock Joints 被引量:1
3
作者 Chenlu Wang Luobin Zheng +3 位作者 Liangqing Wang Linfeng Zhu Shanbai Wu Shan Deng 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1626-1639,共14页
The mechanical properties of bolts are important factors affecting the shear behavior of bolted joints.In this study,tensile and pure shear tests were conducted on five kinds of bolts made from different materials to ... The mechanical properties of bolts are important factors affecting the shear behavior of bolted joints.In this study,tensile and pure shear tests were conducted on five kinds of bolts made from different materials to measure their tensile and shear parameters.Direct shear tests were conducted to analyze the effects of tensile and shear strength parameters on the shear behavior of bolted joints.The test results showed that the mechanical properties of bolts made from different materials were clearly different and that these differences mainly affected the plastic deformation stage of the bolted joints.The larger the bolt elongation was,the larger the joint shear displacement at bolt failure.The tensile and shear strengths of the bolts were positively correlated with the shear strength of the bolted joints.According to the standard regression analysis,the bolt shear strength had a greater influence than the bolt tensile strength on the bolt contributions when the bolts were perpendicular to the joint surface.Based on the empirical equation for the bolt contribution proposed by Spang,the maximum shear loads in the pure shear test were introduced,and a new equation was established to predict the contributions of bolts.The prediction results obtained using the modified equation were in good agreement with the experimental results. 展开更多
关键词 rock bolt shear strength bolt contribution mechanical property engineering geology
原文传递
Failure characterization of fully grouted rock bolts under triaxial testing 被引量:2
4
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts bolt-grout interface Bond strength Push test Triaxial tests
在线阅读 下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
5
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
在线阅读 下载PDF
Stability analysis of tunnel face reinforced with face bolts
6
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels Tunnel face Face bolts Limit equilibrium method Slice method
原文传递
Study on Fracture Delay of High-Strength Bolts in Road Bridge Maintenance
7
作者 Rongpeng Xu 《Journal of Architectural Research and Development》 2024年第5期1-6,共6页
In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela... In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects. 展开更多
关键词 Highway bridge engineering Bridge maintenance High-strength bolts Fracture delay Maintenance recommendations
在线阅读 下载PDF
Effects of bolt joint loosening on the dynamic characteristics of electric angle steel transmission tower
8
作者 CAI Yunzhu XING Yujie +1 位作者 XIE Qiang CHENG Xiaowu 《Journal of Southeast University(English Edition)》 2025年第2期180-189,共10页
Transmission towers,serving as the support structure of transmission lines,are significant for the functional-ity of an electric transmission system.Bolt joint loosening is one of the critical factors that can affect ... Transmission towers,serving as the support structure of transmission lines,are significant for the functional-ity of an electric transmission system.Bolt joint loosening is one of the critical factors that can affect the safety and stability of transmission towers.In this study,the effects of bolt joint loosening on the dynamic characteristics of a 220-kV angle steel transmission tower are the main topic of concern.First,the mechanical properties of typical joints subjected to different degrees of bolt loosening are studied by finite solid-element simulation,based on which a finite hybrid-element modeling method is developed for a tower structure suffering varying loose degrees in the joints.Taking a 220-kV angle steel transmission tower as the object,the influence of the position and degree of loosening on the tower’s natural frequencies and mode shapes are simulated and discussed.The results demonstrate that the main-member splice joint and the main diagonal-horizontal member gusset plate joint account for the dominant impact on the dynamic characteristics of the tower.In addition,the dominant joint shifts from the main-member splice joint to the main diagonal-horizontal member gusset plate joint as the considered modal order increases.In the case of double joints loosening simultaneously,the loosening of nondomi-nant joints has nonnegligible effects on the tower as well. 展开更多
关键词 transmission tower bolt joint bolt loosening dynamic characteristics
在线阅读 下载PDF
Influence of the saw-tooth angle of rock joints on the shear performance of 2G-NPR bolt
9
作者 REN Shu-lin HE Man-chao +3 位作者 YUAN Yong TAO Zhi-gang ZHU Chun YIN Qian 《Journal of Central South University》 2025年第8期2998-3014,共17页
The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd g... The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization. 展开更多
关键词 jointed rock mass shear resistance bolt anchorage 2G-NPR bolt saw-tooth rock joint
在线阅读 下载PDF
Microscopic-NPR bolt slurry-anchor interface bonding performance
10
作者 TAO Zhigang XI Chuanhao +3 位作者 ZHANG Jin WANG Xiang WANG Huan WANG Jiong 《Journal of Mountain Science》 2025年第5期1832-1847,共16页
The excellent bonding performance between bolt and anchor materials is crucial for controlling the deformation of deep-buried surrounding rock and strengthening the rock and soil mass in the slope.This paper conducted... The excellent bonding performance between bolt and anchor materials is crucial for controlling the deformation of deep-buried surrounding rock and strengthening the rock and soil mass in the slope.This paper conducted an anchoring test and ABAQUS numerical simulation of an anchoring system comprising a micro-NPR(microscopic negative Poisson’s ratio)bolt and cement mortar as the anchoring material.The failure mode of this system and the distribution of average bonding strength,axial force,and shear stress along the anchoring depth were studied.We also evaluated the bonding properties at the micro-NPR(microscopic negative Poisson’s ratio)bolt-cement mortar interface.The findings indicate that the cement mortar is partially spalled from the micro-NPR bolt surface.The average bonding strength at the micro-NPR bolt-cement mortar interface is positively correlated with anchoring length and cement mortar strength.In contrast,it exhibits a negative correlation with bolt diameter.The axial force is generated at the starting point of the anchorage and decreases non-uniformly across the anchoring region.The axial force transfers or diffuses toward the deeper sections of the anchoring segment with increasing loads.The shear stress at the micro-NPR bolt-cement mortar interface exhibits a single-peak pattern,i.e.,it climbs to a peak value and decreases along the anchoring depth.The peak position varies with changes in bolt diameter and anchoring length.By comparison,it is independent of cement mortar strength.The simulated bonding properties of the micro-NPR bolt-cement mortar interface are consistent with experimental results.The findings can provide a reference for engineering applications and anchoring design of micro-NPR. 展开更多
关键词 Microscopic Negative Poisson Ratio bolt Bond performance bolt diameter Anchor length Cement mortar strength
原文传递
Comparative Analyses of Physiological and Transcriptomic Responses Reveal Chive(Allium ascalonicum L.)Bolting Tolerance Mechanisms
11
作者 Siyang Ou Liuyan Yang +5 位作者 Tingting Yuan Mutong Li Guohui Liao Wanping Zhang Guangdong Geng Suqin Zhang 《Phyton-International Journal of Experimental Botany》 2025年第8期2441-2460,共20页
Chive(Allium ascalonicum L.),a seeding-vernalization-type vegetable,is prone to bolting.To explore the physiological and molecular mechanisms of its bolting,bolting-prone(‘BA’)and bolting-resistant(‘WA’)chives wer... Chive(Allium ascalonicum L.),a seeding-vernalization-type vegetable,is prone to bolting.To explore the physiological and molecular mechanisms of its bolting,bolting-prone(‘BA’)and bolting-resistant(‘WA’)chives were sampled at the vegetative growth,floral bud differentiation,and bud emergence stages.No bolting was observed in bolting-resistant‘WA’on the 130th day after planting,whereas the bolting reached 39.22%in bolting-prone‘BA’,which was significantly higher than that of‘WA’.The contents of gibberellins,abscisic acid,and zeatin riboside after floral bud differentiation in‘WA’were significantly less than in‘BA’,whereas the indoleacetic acid content in‘WA’was significantly higher than that in‘BA’before and after floral bud differentiation.The soluble sugar content and nitrate reductase activity in‘BA’were significantly higher than those in‘WA’before and during floral bud differentiation periods.However,they were significantly lower in‘BA’compared with in‘WA’after bolting due to the nutrient consumption required by reproductive growth.A transcriptome analysis determined that the differentially expressed genes related to bolting tolerance were enriched in the terms‘photoperiodism,flowering’,‘auxin-activated signaling pathway’,‘gibberellic acid mediated signaling pathway’,and‘carbohydrate metabolic process’,and this was generally consistent with the physiological data.Additionally,12 key differentially expressed genes(including isoform_203018,isoform_481005,isoform_716975,and isoform_564877)related to bolting tolerance were investigated.This research provides new information for breeding bolting-tolerant chives. 展开更多
关键词 AlliumascalonicumL. bolting tolerance floral bud differentiation transcriptome analysis physiological analysis
在线阅读 下载PDF
Analysis of Causes and Recommendations for Premature Bolting in Huarong Large Leaf Mustard
12
作者 Shengquan SU Shaoxiang CHEN +3 位作者 Yunhua YAN Xu LIU Anzhong LI Daoyun GONG 《Plant Diseases and Pests》 2025年第1期34-37,共4页
A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting.... A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases. 展开更多
关键词 Huarong large leaf mustard Premature bolting CAUSE RECOMMENDATION
在线阅读 下载PDF
A comprehensive review of experimental studies on shear behavior of bolted rock joints with varying rock joint and bolt parameters and normal stress
13
作者 Chang Zhou Zhenwei Lang +3 位作者 Shun Huang Qinghong Dong Yanzhi Wang Wenbo Zheng 《Deep Underground Science and Engineering》 2025年第2期189-209,共21页
The shear characteristics of bolted rock joints are crucial for the stability of tunneling and mining,particularly in deep underground engineering,where rock bolt materials are exposed to high stress,water pressure,an... The shear characteristics of bolted rock joints are crucial for the stability of tunneling and mining,particularly in deep underground engineering,where rock bolt materials are exposed to high stress,water pressure,and engineering disturbance.However,due to the complex interaction between bolted rock joints and various geological contexts,many challenges and unsolved problems arise.Therefore,more investigation is needed to understand the shear performance of bolted joints in the field of deep underground engineering.This study presents a comprehensive review of research findings on the responses of bolted joints subjected to shearing under different conditions.As is revealed,the average shear strength of bolted rock joints increases linearly with the normal stress and increases with the compressive strength of rock until it reaches a stable value.The joint roughness coefficient(JRC)affects the contact area,friction force,shear strength,bending angle,and axial force of bolted rock joints.A mathematical function is proposed to model the relationship between JRC,normal load,and shear strength.The normal stress level also influences the deformation model,load-carrying capacity,and energy absorption ratio of bolts within bolted rock joints,and can be effectively characterized by a two-phase exponential equation.Additionally,the angle of the bolts affects the ratio of tensile and shear strength of the bolts,as well as the mechanical behavior of both bolted rock joints and surrounding rock,which favors smaller angles.This comprehensive review of experimental data on the shear behavior of bolted rock joints offers valuable theoretical insights for the development of advanced shear devices and further pertinent investigations. 展开更多
关键词 bending angle rock bolt rock fracture ROUGHNESS shear resistance
原文传递
Theoretical and experimental investigation on vibration of bolted-flange-joined conical-cylindrical shells
14
作者 Chunhao ZHANG Qingdong CHAI +2 位作者 Changyuan YU Wuce XING Yanqing WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1049-1068,共20页
This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure ... This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure distribution within the bolted joint and accounts for the flange effect.The energy expressions for the conical and cylindrical shells are derived from Donnell's shell theory,while those for the flanges are obtained from the Euler-Bernoulli beam theory.The Lagrange equation is used to derive the dynamic equation,and the experimental studies on the BFJCCS are conducted to validate the accuracy of the model.Subsequently,the comprehensive effects of bolt loosening and bolt number on the frequency parameters are analyzed.Additionally,the effects of the flange dimensions and cone angle on the vibration behavior of the BFJCCS are discussed.In particular,the dynamic differences between the welded conical-cylindrical shell(WCCS)and BFJCCS are investigated.It is found that compared with the WCCS,the fundamental frequency of the BFJCCS is reduced by 7.6%,and the corresponding modal damping ratio is reduced by 21.0%.However,the high-order frequencies of the BFJCCS are higher than those of the WCCS,accompanied by a higher modal damping ratio.Compared with the bolt loosening degree,the bolt number has a more significant effect on frequencies.As the bolt number decreases,the impact of the bolt loosening degree diminishes gradually. 展开更多
关键词 bolted-flange-joined conical-cylindrical shell vibration characteristic bolt loosening experiment
在线阅读 下载PDF
Landing scheduling for carrier aircraft fleet considering bolting probability and aerial refueling
15
作者 Genlai Zhang Lei Wang +6 位作者 Zhilong Deng Xuanbo Liu Xichao Su Haixu Li Chen Lu Kai Liu Xinwei Wang 《Defence Technology(防务技术)》 2025年第8期1-19,共19页
Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most o... Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD. 展开更多
关键词 Carrier aircraft Landing scheduling boltING Aerial refueling Improved firefly algorithm Dynamic replanning
在线阅读 下载PDF
Dynamic modeling of a fully flexible rotor-stator system with bolt joint and rubbing-induced nonlinear vibration
16
作者 Hong GUAN Hui MA +4 位作者 Tianrui YANG Yanyan CHEN Yao ZENG Qinqin MU Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1939-1954,I0037-I0048,共28页
In addition to blade-to-casing rubbing,drum-to-labyrinth rubbing is another common interaction in aero-engines.In this study,the labyrinth seal is simplified and modeled as an inner ring.First,considering the flexibil... In addition to blade-to-casing rubbing,drum-to-labyrinth rubbing is another common interaction in aero-engines.In this study,the labyrinth seal is simplified and modeled as an inner ring.First,considering the flexibility of both the drum and inner ring,a novel rubbing force model applicable to drum-inner ring rubbing is proposed,and this model is partially validated with the measured vibration responses.Incorporating both drum-inner ring rubbing faults and bolt joint effects,a dynamic model of the shaft-diskdrum-inner ring-vane-casing system(SDDIRVCS)is established with beam-shell hybrid elements to investigate the nonlinear dynamic responses induced by rubbing at various rotational speeds.The established dynamic model of the SDDIRVCS is validated by the comparison of its modal characteristics with those obtained from the ANSYS simulations.The results indicate that the rotor spectrum is dominated by odd-multiple harmonics,while the stator spectrum exhibits prominent even-multiple harmonics.Moreover,the rubbing location between the drum and the inner ring varies with the dynamic behavior of the rotor system. 展开更多
关键词 shaft-disk-drum-inner ring-vane-casing system(SDDIRVCS) vibration characteristic drum-inner ring rubbing fault bolted joint finite element method(FEM)
在线阅读 下载PDF
Experimental assessment of fatigue life and fracture modes in MTS-based bolted joints
17
作者 Kerim Altingeyik Ibrahim T.Teke Ahmet H.Ertas 《Railway Sciences》 2025年第4期464-474,共11页
Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relat... Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relationship between load amplitude,fatigue life,and damage progression in low-carbon steel assemblies.Design/methodology/approach–An experimental approach was adopted using MTS specimens fabricated from St 1203 cold-rolled steel,joined with Grade 8.8 M4 bolts.Cyclic fatigue tests were conducted under zerobased loading at seven distinct force levels.Fracture surfaces were visually analyzed to identify dominant failure mechanisms.Findings–The results revealed a strong inverse correlation between applied cyclic load and fatigue life.Three distinct failure modes were identified:bolt shear at high loads(5.4 kN),interface cracking and slippage at moderate loads(4.9–5.1 kN),and plate tearing or stable fatigue behavior at lower loads(54.1 kN).The results highlight a progressive transition in failure mechanisms,from bolt shear at high loads to plate tearing and interface cracking at lower loads,providing essential insights for fatigue-resistant bolted joint design.Originality/value–This study offers original insights into the fatigue behavior of bolted lap joints using MTS,a relatively underexplored configuration in fatigue assessment.By experimentally evaluating failure modes under varied cyclic load levels,the authors uncover critical transitions in damage mechanisms—from bolt shear to interface cracking and plate tearing—depending on the applied load.Unlike many existing studies focused on numerical modeling or bonded joints alone,this work provides empirical data rooted in real-world fastening conditions using cold-rolled low-carbon steel. 展开更多
关键词 Fatigue life bolted joints Modified tensile specimen(MTS) Failure modes Cyclic loading Fracture analysis Lap joints Low-carbon steel Experimental fatigue testing Shear failure
在线阅读 下载PDF
Research Review of Principles and Methods for Ultrasonic Measurement of Axial Stress in Bolts 被引量:22
18
作者 Qinxue Pan Ruipeng Pan +2 位作者 Chang Shao Meile Chang Xiaoyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期44-59,共16页
Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance... Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance of a phase change in the connected material composition. The precise control of the tightening force in bolts is closely related to the safety and reliability of the connected equipment or structure. Although there are many methods for estimating the tightening force applied to a bolt during assembly, poor accuracy in controlling the preload during the tightening process and a lack of monitoring to determine the residual axial force in service remain issues in evaluating the safety of bolted assemblies. As a nondestructive testing technology, ultrasonic measurement can be applied to successfully address these issues. In order to help researchers understand the theoretical basis and technological development in this field and to equip them to conduct further in-depth research, in this review, the basic knowledge describing the state of stress and deformation of bolts, as well as conventional testing methods are summarized and analyzed. Then, through a review of recent research of the ultrasonic measurement of the axial stress in bolts, the influence of the e ective stressed length and temperature are analyzed and proposed methods of calibration and compensation are reviewed. In order to avoid coupling errors caused by traditional piezoelectric transducers, two newly proposed ultrasonic coupling technologies, the electromagnetic acoustic transducer(EMAT) and the permanent mounted transducer system(PMTS), are reviewed. Finally, the new direction of research of the detection of residual axial stress in in-service bolts that have been assembled to yield is discussed. 展开更多
关键词 boltED CONNECTIONS AXIAL stress ULTRASONIC WAVES Influencing factors Coupling techniques
在线阅读 下载PDF
Laboratory pull-out tests on fully grouted rock bolts and cable bolts:Results and lessons learned 被引量:23
19
作者 Isabelle Thenevin Laura Blanco-Martín +3 位作者 Faouzi Hadj-Hassen Jacques Schleifer Zbigniew Lubosik Aleksander Wrana 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期843-855,共13页
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini... Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface. 展开更多
关键词 Pull-out test Fully grouted bolts Laboratory-scale Confining pressure Embedment length bolt-grout interface
在线阅读 下载PDF
Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading 被引量:12
20
作者 Faham Tahmasebinia Chengguo Zhang +2 位作者 Ismet Canbulat Onur Vardar Serkan Saydam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期807-811,共5页
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ... Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models. 展开更多
关键词 CABLE bolts YIELDING support Coal BURST SHEAR dynamic loading
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部