The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infra...The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.展开更多
Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semicon...Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semiconducting In_(2)Se_(2) or a 2D ferroelectricα-In_(2)Se_(3) layer.Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum,where the chirality of the spin texture reverses within the upper spin-split branch,in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point.The ferroelectric nature ofα-In_(2)Se_(3) further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field.Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction.This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications.展开更多
Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic...Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals.展开更多
Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen e...Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.展开更多
We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. O...We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron area/density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.展开更多
The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Ah...The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.展开更多
Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional...Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.展开更多
We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e...We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.展开更多
Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in con- densed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2We3 but at an ext...Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in con- densed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2We3 but at an extremely low observational temperature, thereby limiting its potential appli- cation in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a com- pensated n-p co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering, ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferro- magnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re-B and Pt-B co-doped graphene systems can reach up to 158 and 85 meV, re- spectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depe...Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depends on electron spins thanks to Dresselhaus SOC,therefore electron spins can be separated from the space domain and spinpolarized electrons in semiconductors can be realized.Both the magnitude and sign of the spin polarization ratio change with the electron energy,in-plane wave vector,strain engineering and semiconductor layer thickness.The spin polarization ratio approaches a maximum at resonance;however,no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector.More importantly,the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness,giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics.展开更多
This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abun...This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.展开更多
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e...The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.展开更多
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical chal...The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.展开更多
Spin-orbit coupling(SOC)plays a vital role in determining the ground state and forming novel electronic states of matter where heavy elements are involved.Here,the prototypical perovskite iridate oxide SrIrO_(3)is inv...Spin-orbit coupling(SOC)plays a vital role in determining the ground state and forming novel electronic states of matter where heavy elements are involved.Here,the prototypical perovskite iridate oxide SrIrO_(3)is investigated to gain more insights into the SOC effect in the modification of electronic structure and corresponding magnetic and electrical properties.The high pressure metastable orthorhombic SrIrO_(3)is successfully stabilized by physical and chemical pressures,in which the chemical pressure is induced by Ru doping in Ir site and Mg substitution of Sr position.Detailed structural,magnetic,electrical characterizations and density functional theory(DFT)calculations reveal that the substitution of Ru for Ir renders an enhanced metallic characteristic,while the introduction of Mg into Sr site results in an insulating state with 10.1%negative magnetoresistance at 10 K under 7 T.Theoretical calculations indicate that Ru doping can weaken the SOC effect,leading to the decrease of orbital energy difference between J_(1/2)and J_(3/2),which is favorable for electron transport.On the contrary,Mg doping can enhance the SOC effect,inducing a metal-insulator-transition(MIT).The electronic phase transition is further revealed by DFT calculations,confirming that the strong SOC and electron-electron interactions can lead to the emergence of insulating state.These findings underline the intricate correlations between lattice degrees of freedom and SOC in determining the ground state,which effectively stimulate the physical pressure between like structures by chemical compression.展开更多
文摘The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant Nos.2017YFA0204904 and 2019YFA0210004)the National Natural Science Foundation of China(Grant Nos.11674299 and 11634011)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fund of Anhui Initiative Program in Quantum Information Technologies(Grant No.AHY170000)the Fundamental Research Funds for the Central Universities,China(Grant No.WK3510000013).
文摘Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semiconducting In_(2)Se_(2) or a 2D ferroelectricα-In_(2)Se_(3) layer.Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum,where the chirality of the spin texture reverses within the upper spin-split branch,in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point.The ferroelectric nature ofα-In_(2)Se_(3) further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field.Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction.This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications.
基金supported by the National Key R&D Program of China (Grant No. 2017YFA0402901)the National Natural Science Foundation of China (Grant No. U2032153)+2 种基金the International Partnership Program (Grant No. 211134KYSB20190063)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000)the USTC Research Funds of the Double First-Class Initiative (Grant No. YD2310002004)。
文摘Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals.
基金Supported by the National Natural Science Foundation of China(No.52273056)the Science and Technology Development Program of Jilin Province,China(No.YDZJ202501ZYTS305)。
文摘Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347004.
文摘We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron area/density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China (Grant No. F200939)
文摘The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
文摘Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110198)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2024A1515030131 and 2021A1515010214)+2 种基金the National Natural Science Foundation of China(Grant Nos.12274077,11905032,and 12475014)the Research Fund of the Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Israel Science Foundation(Grant No.1695/22).
文摘We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.
基金This work was financially supported by the National Key Research and Development Program (Grant No. 2017YFB0405703), the National Natural Science Foundation of China (Grant Nos. 11104173, 61434002, and 51025101) and Sanjin Scholar of Shanxi. X. D. and Z. Q. also acknowledge the support of the China Government Youth 1000-Plan Talent Program and the National Key Research and Development Program (Grant No. 2016YFA0301700). We are grateful to the supercomputing service of AM-HPC and the Supercomputing Center of USTC for provid- ing the high-performance computing resources used in this study.
文摘Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in con- densed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2We3 but at an extremely low observational temperature, thereby limiting its potential appli- cation in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a com- pensated n-p co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering, ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferro- magnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re-B and Pt-B co-doped graphene systems can reach up to 158 and 85 meV, re- spectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Project supported by the National Natural Science Foundation of China(Grant No.62164005).
文摘Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depends on electron spins thanks to Dresselhaus SOC,therefore electron spins can be separated from the space domain and spinpolarized electrons in semiconductors can be realized.Both the magnitude and sign of the spin polarization ratio change with the electron energy,in-plane wave vector,strain engineering and semiconductor layer thickness.The spin polarization ratio approaches a maximum at resonance;however,no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector.More importantly,the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness,giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics.
基金National Programs for NanoKey Project(2022YFA1504002)National Natural Science Foundation of China(22078233)。
文摘This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.
基金supported by the Natural Science Fund of China(31771724)the Key Research and Development Project of Shaanxi Province(2024NC-ZDCYL-01-10).
文摘The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
基金the National Key R&D Program of China(2021YFB4000300)National Natural Science Foundation of China(21822803,22408030,22072009,91534205,51072239)National Program on Key Basic Research Project(973 Program,2012CB720303).
文摘The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.
基金supported by the National Natural Science Foundation of China(NSFC,No.22090041)the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515120014)。
文摘Spin-orbit coupling(SOC)plays a vital role in determining the ground state and forming novel electronic states of matter where heavy elements are involved.Here,the prototypical perovskite iridate oxide SrIrO_(3)is investigated to gain more insights into the SOC effect in the modification of electronic structure and corresponding magnetic and electrical properties.The high pressure metastable orthorhombic SrIrO_(3)is successfully stabilized by physical and chemical pressures,in which the chemical pressure is induced by Ru doping in Ir site and Mg substitution of Sr position.Detailed structural,magnetic,electrical characterizations and density functional theory(DFT)calculations reveal that the substitution of Ru for Ir renders an enhanced metallic characteristic,while the introduction of Mg into Sr site results in an insulating state with 10.1%negative magnetoresistance at 10 K under 7 T.Theoretical calculations indicate that Ru doping can weaken the SOC effect,leading to the decrease of orbital energy difference between J_(1/2)and J_(3/2),which is favorable for electron transport.On the contrary,Mg doping can enhance the SOC effect,inducing a metal-insulator-transition(MIT).The electronic phase transition is further revealed by DFT calculations,confirming that the strong SOC and electron-electron interactions can lead to the emergence of insulating state.These findings underline the intricate correlations between lattice degrees of freedom and SOC in determining the ground state,which effectively stimulate the physical pressure between like structures by chemical compression.