False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail...False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta...Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug.展开更多
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u...False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.展开更多
High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution ...High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures.展开更多
This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic...This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role...Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.展开更多
Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-...Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-19 case information using spatio-temporal objects with multi-granularity is proposed based on the officially provided case information.This analysis reveals the spread of the epidemic,from the perspective of spatio-temporal objects,to provide references for related research and the formulation of epidemic prevention and control measures.The case information is abstracted,descripted,represented,and analyzed in the form of spatio-temporal objects through the construction of spatio-temporal case objects,multi-level visual expressions,and spatial correlation analysis.The rationality of the method is verified through visualization scenarios of case information statistics for China,Henan cases,and cases related to Shulan.The results show that the proposed method is helpful in the research and judgment of the development trend of the epidemic,the discovery of the transmission law,and the spatial traceability of the cases.It has a good portability and good expansion performance,so it can be used for the visual analysis of case information for other regions and can help users quickly discover the potential knowledge this information contains.展开更多
Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci...Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Tak...In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Taking classification attribute of small spatio-temporal data files in Smart City as the basis of cache content selection, the cache system adopts different cache pool management strategies in different levels of cache. The results of experiment in prototype system indicate that multi-level cache in this paper effectively increases the access bandwidth of small spatio-temporal files in Smart City and greatly improves service quality of multiple concurrent access in system.展开更多
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id...Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.展开更多
By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline...By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.展开更多
The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrati...The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique.A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository(COOLR)dataset across multiple temporal intervals(12 h to 1 h prior to events).Feature engineering was performed using Choquet fuzzy integral-based importance scoring,which enables the model to account for interactions and uncertainty across multiple features.Three individual Long Short-Term Memory(LSTM)models were trained for hazard location,average precipitation,and hazard category(i.e.,to detect the potential of natural disasters).These models were trained on varying temporal scales from 12 to 1 h prior to the event.These individual models achieved the performance of Mean Absolute Error(MAE)2.2 and 3.2,respectively,for the hazard location and average precipitation models,and an F1-score of 0.825 for the hazard category model.The results also indicate that the LSTM model outperformed traditional Machine Learning(ML)models,and the use of the fuzzy integral enhanced the prediction capability by 8.12%,2.6%,and 6.37%,respectively,for all three individual models.Furthermore,a rule-based algorithm was developed to synthesize the outputs from the individual models into a 3×3 grid of multi-hazard warnings.These findings underscore the effectiveness of the proposed framework in advancing multi-hazard forecasting and situational awareness,offering valuable support for timely and data-driven emergency response planning.展开更多
Exploiting remote sensing data is a promising approach to estimate surface solar irradiance(SSI).In this study,we propose a method to estimate global SSI using a lookup table and Landsat data.Despite the low temporal ...Exploiting remote sensing data is a promising approach to estimate surface solar irradiance(SSI).In this study,we propose a method to estimate global SSI using a lookup table and Landsat data.Despite the low temporal resolution of the data used,the developed method produces SSI maps with adequate spatial resolution.It combines physical parameters extracted from Landsat metadata files with the physical laws governing global solar irradiance,its transmission through the atmosphere,and surface reflectance.The results obtained are compared with those in the literature,particularly one study that uses Meteosat data and two others that use radiometric spectral and temporal models.Additionally,experiments are conducted at three sites in Algeria:Oran,In Amenas,and Tamenghasset.The findings indicate that the proposed approach aligns with the tested literature methods while providing SSI maps with superior spatial resolution.Furthermore,the obtained solar irradiances exhibit a root mean square error of approximately 190 W m^(−2)μm^(−1) compared with those of the Bird and Riordan spectral model,and approximately 50 W m^(−2) compared with the results from the Bird and Hulstrom temporal model,and are also comparable to the results of previous studies.展开更多
Visual object tracking(VOT),aiming to track a target object in a continuous video,is a fundamental and critical task in computer vision.However,the reliance on third-party resources(e.g.,dataset)for training poses con...Visual object tracking(VOT),aiming to track a target object in a continuous video,is a fundamental and critical task in computer vision.However,the reliance on third-party resources(e.g.,dataset)for training poses concealed threats to the security of VOT models.In this paper,we reveal that VOT models are vulnerable to a poison-only and targeted backdoor attack,where the adversary can achieve arbitrary tracking predictions by manipulating only part of the training data.Specifically,we first define and formulate three different variants of the targeted attacks:size-manipulation,trajectory-manipulation,and hybrid attacks.To implement these,we introduce Random Video Poisoning(RVP),a novel poison-only strategy that exploits temporal correlations within video data by poisoning entire video sequences.Extensive experiments demonstrate that RVP effectively injects controllable backdoors,enabling precise manipulation of tracking behavior upon trigger activation,while maintaining high performance on benign data,thus ensuring stealth.Our findings not only expose significant vulnerabilities but also highlight that the underlying principles could be adapted for beneficial uses,such as dataset watermarking for copyright protection.展开更多
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor...In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.展开更多
An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introdu...An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.展开更多
基金supported by National Key Research and Development Plan of China(No.2022YFB3103304).
文摘False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
基金supported by National Natural Science Foundation of China(61673186 and 61871196)Beijing Normal University Education Reform Project(jx2024040)Guangdong Undergraduate Universities Teaching Quality and Reform Project(jx2024309).
文摘Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug.
基金supported in part by the Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.
基金supported by the National Key Research Program(No.2018YFB1601105,No.2018YFB1601102)the Natural Science Foundation of China(No.41975165,No.U1811463)Chongqing Science and Technology Project(No.cstc2019jscxfxydX0035)。
文摘High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures.
基金The Third Xinjiang Scientific Expedition Program(2021xjkk0905)GDAS Special Project of Science and Technology Development(2020GDASYL-20200301003)+2 种基金GDAS Special Project of Science and Technology Development(2020GDASYL-20200102002)National Natural Science Foundation of China(41501144)Project of Department of Natural Resources of Guangdong Province(GDZRZYKJ2022005)。
文摘This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金supported by the Natural Science Foundation of Hubei Province, China (2017CFB434)the National Natural Science Foundation of China (41506208 and 61501200)the Basic Research Funds for Yellow River Institute of Hydraulic Research, China (HKYJBYW-2016-06)
文摘Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.
基金National Key Research and Development Program of China,No.2016YFB0502300。
文摘Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-19 case information using spatio-temporal objects with multi-granularity is proposed based on the officially provided case information.This analysis reveals the spread of the epidemic,from the perspective of spatio-temporal objects,to provide references for related research and the formulation of epidemic prevention and control measures.The case information is abstracted,descripted,represented,and analyzed in the form of spatio-temporal objects through the construction of spatio-temporal case objects,multi-level visual expressions,and spatial correlation analysis.The rationality of the method is verified through visualization scenarios of case information statistics for China,Henan cases,and cases related to Shulan.The results show that the proposed method is helpful in the research and judgment of the development trend of the epidemic,the discovery of the transmission law,and the spatial traceability of the cases.It has a good portability and good expansion performance,so it can be used for the visual analysis of case information for other regions and can help users quickly discover the potential knowledge this information contains.
文摘Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金Supported by the Natural Science Foundation of Hubei Province(2012FFC034,2014CFC1100)
文摘In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Taking classification attribute of small spatio-temporal data files in Smart City as the basis of cache content selection, the cache system adopts different cache pool management strategies in different levels of cache. The results of experiment in prototype system indicate that multi-level cache in this paper effectively increases the access bandwidth of small spatio-temporal files in Smart City and greatly improves service quality of multiple concurrent access in system.
基金This research was supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2020-2016-0-00313)supervised by the Institute for Information&communications Technology Planning&Evaluation(IITP)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.
文摘By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.
文摘The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique.A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository(COOLR)dataset across multiple temporal intervals(12 h to 1 h prior to events).Feature engineering was performed using Choquet fuzzy integral-based importance scoring,which enables the model to account for interactions and uncertainty across multiple features.Three individual Long Short-Term Memory(LSTM)models were trained for hazard location,average precipitation,and hazard category(i.e.,to detect the potential of natural disasters).These models were trained on varying temporal scales from 12 to 1 h prior to the event.These individual models achieved the performance of Mean Absolute Error(MAE)2.2 and 3.2,respectively,for the hazard location and average precipitation models,and an F1-score of 0.825 for the hazard category model.The results also indicate that the LSTM model outperformed traditional Machine Learning(ML)models,and the use of the fuzzy integral enhanced the prediction capability by 8.12%,2.6%,and 6.37%,respectively,for all three individual models.Furthermore,a rule-based algorithm was developed to synthesize the outputs from the individual models into a 3×3 grid of multi-hazard warnings.These findings underscore the effectiveness of the proposed framework in advancing multi-hazard forecasting and situational awareness,offering valuable support for timely and data-driven emergency response planning.
基金supported by the Earth Observation Research Department,Centre des Techniques Spatiales(CTS),Algerian Space Agency(ASAL)。
文摘Exploiting remote sensing data is a promising approach to estimate surface solar irradiance(SSI).In this study,we propose a method to estimate global SSI using a lookup table and Landsat data.Despite the low temporal resolution of the data used,the developed method produces SSI maps with adequate spatial resolution.It combines physical parameters extracted from Landsat metadata files with the physical laws governing global solar irradiance,its transmission through the atmosphere,and surface reflectance.The results obtained are compared with those in the literature,particularly one study that uses Meteosat data and two others that use radiometric spectral and temporal models.Additionally,experiments are conducted at three sites in Algeria:Oran,In Amenas,and Tamenghasset.The findings indicate that the proposed approach aligns with the tested literature methods while providing SSI maps with superior spatial resolution.Furthermore,the obtained solar irradiances exhibit a root mean square error of approximately 190 W m^(−2)μm^(−1) compared with those of the Bird and Riordan spectral model,and approximately 50 W m^(−2) compared with the results from the Bird and Hulstrom temporal model,and are also comparable to the results of previous studies.
基金supported in part by the"Pioneer"and"Leading Goose"R&D Program of Zhejiang under Grant No. 2024C01169the National Natural Science Foundation of China under Grant Nos. 62441238 and U2441240。
文摘Visual object tracking(VOT),aiming to track a target object in a continuous video,is a fundamental and critical task in computer vision.However,the reliance on third-party resources(e.g.,dataset)for training poses concealed threats to the security of VOT models.In this paper,we reveal that VOT models are vulnerable to a poison-only and targeted backdoor attack,where the adversary can achieve arbitrary tracking predictions by manipulating only part of the training data.Specifically,we first define and formulate three different variants of the targeted attacks:size-manipulation,trajectory-manipulation,and hybrid attacks.To implement these,we introduce Random Video Poisoning(RVP),a novel poison-only strategy that exploits temporal correlations within video data by poisoning entire video sequences.Extensive experiments demonstrate that RVP effectively injects controllable backdoors,enabling precise manipulation of tracking behavior upon trigger activation,while maintaining high performance on benign data,thus ensuring stealth.Our findings not only expose significant vulnerabilities but also highlight that the underlying principles could be adapted for beneficial uses,such as dataset watermarking for copyright protection.
文摘In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.
文摘An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.