High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for re...High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.展开更多
The building of the ocean power strategy and the implementation of the blue agriculture plan urgently need to strengthen the sustainable development of marine fishery.Taking vulnerability as the starting point, this p...The building of the ocean power strategy and the implementation of the blue agriculture plan urgently need to strengthen the sustainable development of marine fishery.Taking vulnerability as the starting point, this paper constructs the vulnerability index system of marine fishery industry ecosystem from the aspects of sensitivity and response capacity, and combines the entropy method with the Topsis to comprehensively analyze the spatio-temporal evolution characteristics of vulnerability of marine fishery industry ecosystem in the Bohai Rim Region from 2001 to 2015.The results show that: 1) In the time dimension, from 2001 to 2015, the vulnerability of the marine fishery industry ecosystem in the Bohai Rim Region shows a fluctuant and degressive trend;2) In the spatial dimension, the spatial distribution of the marine fishery industry ecosystem vulnerability in the Bohai Rim Region presents the gradient characteristics which shows high vulnerability in the east and low vulnerability in the west.According to the evolution track of the system’s vulnerability level, the vulnerability of the marine fishery industry ecosystem is divided into ‘declining’ and ‘stable’ types of evolutionary structures;3) The development of marine fishery in the Bohai Rim Region needs to be derived from the marine fishery’s ecological environment and the industrial development mode and structure, which can improve the marine environment remediation efforts, optimize the marine fishery industry structure, vigorously focus on pelagic fishery, and enhance the introduction of marine fishery’s science and technology talents, etc.Then, the marine fishery’s development in the Bohai Rim Region will be moving in the green, circular and sustainable direction.展开更多
Ecological land(Eco-land) is a basic resource for human beings to survive, and eco-land use is a strategy, a way to manage the land resource. So, ecologically-sustainable land use is essential for human beings to surv...Ecological land(Eco-land) is a basic resource for human beings to survive, and eco-land use is a strategy, a way to manage the land resource. So, ecologically-sustainable land use is essential for human beings to survive. This paper investigates the spatiotemporal characteristics and mechanisms of urban-rural eco-land using a new and innovative integration way based on eco-land change data in China's Loess Plateau(LP) prefecture level cities and explores factors of eco-land change. The spatial difference characteristic of eco-land among different level cities in the LP is that: small cities > big cities > middle cities. From 2009 to 2016, the eco-land in the LP from the perspective of urban-rural areas has changed significantly. Significant differences of urban-rural eco-land were identified among various urban growth types, and all the cities in the LP were further classified into four types based on eco-land change trend, with type A and B cities identified as the vital zone and major zone. Taking the eco-fragile region Loess Plateau(LP) as an example, our results demonstrated that the migrants to cities in LP could relieve ecological pressures and promote restoration of ecological vegetation. We have demonstrated that urbanization and the influence of government policy can be discerned through the quantification of the spatial-temporal change of eco-land and suggest that combining both urban and rural eco-land can support more effective land use decisions and provide theoretical basis for the practical application of urban planning, policy-making and sustainable development. What's more, governments should strive to population mobility and restore vegetation to sustain this fragile ecological environment.展开更多
Under the support of the remote sensing and geographical information system(GIS) techniques,we acquire the land use data in 1990 and 2008 regarding 6 inhabited islands,namely Longxue Island,Hengmen Island,Weiyuan Isla...Under the support of the remote sensing and geographical information system(GIS) techniques,we acquire the land use data in 1990 and 2008 regarding 6 inhabited islands,namely Longxue Island,Hengmen Island,Weiyuan Island,Qi'ao Island,Hengqin Island and Gaolan Island in Pearl River Estuary.By using dynamic degree of land use,land use change intensity,relative change rate and other indicators,we conduct quantitative description,and thus quantitatively and qualitatively analyse characteristics of temporal evolution and law of spatial pattern change concerning land use of each island.The study indicates that in the period 1990-2008,the area of construction land and water in 6 islands increased,while the area of agricultural land and unused land increased in some islands and decreased in others.The land use change shows spatial disparity;the holistic land use change degree in Hengmen Island is higher than that of other islands;the dynamic degree of land use,intensity of land use,and relative change rate differ in different islands.展开更多
As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence o...As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence of the economic development stage and the spatio-temporal evolution process at the prefecture level; this may lead to biased policies and their ineffective implementations. Based on Chenery's economic development theory, this paper identifies China's economic development stages at both national and prefectural levels. Both the Global Moran I index and the Getis-Ord Gi* index are employed to investigate the spatio-temporal evolution of China's economic development from 1990 to 2010. Major conclusions can be drawn as follows. (1) China's economic development is generally in the state of agglomeration. It entered the Primary Production Stage in 1990, and the Middle Industrialized Stage in 2010, with a 'balanced-unbalanced-gradually rebalanced' pattern in the process. (2) China's rapid economic growth experienced a spatial shift from the coastal areas to the the inland areas. Most advanced cities in mid-western China can be roughly categorized into regional hub cities and resource-dependent cities. (3) Hot spots in China's economy moved northward and westward. The interactions between cities and prefectures became weaker in Eastern China, while cities and prefectures in Central and Western China were still at the stage of individual development, with limited effect on the surrounding cities. (4) While the overall growth rate of China's economy has gradually slowed down during the past two decades, the growth rate of cities and prefectures in Central and Western China was much faster than those in coastal areas. (5) Areas rich in resources, such as Xinjiang and Inner Mongolia, have become the new hot spots of economic growth in recent years. For these regions, however, more attention needs to be paid to their unbalanced industrial structures and the lagging social development against the backdrop of the rapid economic growth, driven predominantly by the exploitation of resources.展开更多
The operation of large-scale reservoirs have modified water and sediment transport processes,resulting in adjustments to the river topography and water levels.The polynomial fitting method was applied to analyze the v...The operation of large-scale reservoirs have modified water and sediment transport processes,resulting in adjustments to the river topography and water levels.The polynomial fitting method was applied to analyze the variation characteristics of water levels under different water discharge values in the Jingjiang reach of the Yangtze River from 1991–2016.The segregation variable method was used to estimate the contributions of the varied riverbed evaluation,the downstream-controlled water level,and the comprehensive roughness on the altered water level at an identical flow.We find that low water levels in the Jingjiang reach of the Yangtze River from 1991–2016 are characterized by a significant downward trend,which has intensified since 2009.Riverbed scouring has been the dominate factor causing the reduced low water level while increased roughness alleviated this reduction.From 1991–2016,there was first a decrease followed by an increase in the high water level.The variation characteristic in terms of the'high flood discharge at a high water level'before 2003 transformed into a'middle flood discharge at a high water level'since 2009.The increased comprehensive roughness was the main reason for the increased high water level,where river scouring alleviated this rise.For navigation conditions and flood control,intensified riverbed scouring of the sandy reaches downstream from dams enhanced the effects that the downstream water level has on the upstream water level.This has led to an insufficient water depth in the reaches below the dams,which should receive immediate attention.The alteredvariation characteristics of the high water level have also increased the flood pressure in the middle reaches of the Yangtze River.展开更多
In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geomet...In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geometric center of the rupture region and the elliptical centerline of the aftershock region. The result shows, precursor anomalies gradually increased about 2 years before the Wenchuan earthquake. The ratio of abnormal items is greater than 25% in the near source area (about twice the source scale) and 17%-24% in the remote area (about 3-5 times the source scale). There are three different stages of spatiotemporal evolution of precursory anomalies. During the α stage (including α_1 and α_2,between 700 to 3000 days before the main earthquake),the anomalies are mainly distributed in the southwest and northwest area of the Wenchuan aftershocks area. It is shown that the precursors of the far source region and the near source area have the characteristics of outward expansion. During the β stage (between 300 to 700 days before the main earthquake), the anomalies are distributed in the southwest and northern region of the aftershock region, showing a large range of anomalies. During the γ stage (including γ_1 and γ_2, 300 days before the main earthquake),the range of anomaly distribution is wide,and the anomalies are distributed in the southwest and northeast of the aftershock area. The anomalies converged to epicenter (γ_1) in the far source region and expand outwards (γ_2) in the near source region. Results of the experimental study and mechanical analysis of earthquake preparation process indicate that the three-stage characteristics of precursory anomalies in the process of earthquake preparation may be controlled by the seismogenic body,which is a form of expression in the process of earthquake preparation and a universal featureduring the earthquake preparation process,which has a certain guiding role in earthquake prediction.展开更多
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19040401China Postdoctoral Science Foundation,No.2016M600121+1 种基金National Natural Science Foundation of China,No.41701173,No.41501137The State Key Laboratory of Resources and Environmental Information System
文摘High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.
基金Under the auspices of the National Natural Science Foundation of China(No.41201114,41976207)Finance Department of Liaoning Province(No.18C021)
文摘The building of the ocean power strategy and the implementation of the blue agriculture plan urgently need to strengthen the sustainable development of marine fishery.Taking vulnerability as the starting point, this paper constructs the vulnerability index system of marine fishery industry ecosystem from the aspects of sensitivity and response capacity, and combines the entropy method with the Topsis to comprehensively analyze the spatio-temporal evolution characteristics of vulnerability of marine fishery industry ecosystem in the Bohai Rim Region from 2001 to 2015.The results show that: 1) In the time dimension, from 2001 to 2015, the vulnerability of the marine fishery industry ecosystem in the Bohai Rim Region shows a fluctuant and degressive trend;2) In the spatial dimension, the spatial distribution of the marine fishery industry ecosystem vulnerability in the Bohai Rim Region presents the gradient characteristics which shows high vulnerability in the east and low vulnerability in the west.According to the evolution track of the system’s vulnerability level, the vulnerability of the marine fishery industry ecosystem is divided into ‘declining’ and ‘stable’ types of evolutionary structures;3) The development of marine fishery in the Bohai Rim Region needs to be derived from the marine fishery’s ecological environment and the industrial development mode and structure, which can improve the marine environment remediation efforts, optimize the marine fishery industry structure, vigorously focus on pelagic fishery, and enhance the introduction of marine fishery’s science and technology talents, etc.Then, the marine fishery’s development in the Bohai Rim Region will be moving in the green, circular and sustainable direction.
基金funded by the National Key Research and Development Program of China (Grant No.2017YFC0504701)National Natural Science Foundation of China (Grant Nos.41130748 and 41471143)the National Social Science Foundation of China (Grant No 15ZDA021)
文摘Ecological land(Eco-land) is a basic resource for human beings to survive, and eco-land use is a strategy, a way to manage the land resource. So, ecologically-sustainable land use is essential for human beings to survive. This paper investigates the spatiotemporal characteristics and mechanisms of urban-rural eco-land using a new and innovative integration way based on eco-land change data in China's Loess Plateau(LP) prefecture level cities and explores factors of eco-land change. The spatial difference characteristic of eco-land among different level cities in the LP is that: small cities > big cities > middle cities. From 2009 to 2016, the eco-land in the LP from the perspective of urban-rural areas has changed significantly. Significant differences of urban-rural eco-land were identified among various urban growth types, and all the cities in the LP were further classified into four types based on eco-land change trend, with type A and B cities identified as the vital zone and major zone. Taking the eco-fragile region Loess Plateau(LP) as an example, our results demonstrated that the migrants to cities in LP could relieve ecological pressures and promote restoration of ecological vegetation. We have demonstrated that urbanization and the influence of government policy can be discerned through the quantification of the spatial-temporal change of eco-land and suggest that combining both urban and rural eco-land can support more effective land use decisions and provide theoretical basis for the practical application of urban planning, policy-making and sustainable development. What's more, governments should strive to population mobility and restore vegetation to sustain this fragile ecological environment.
基金Supported by Guangdong 908 Special Plan(GD908-01-02)The Marine Science and Technology Director Foundation of South China Sea Branch (0871)
文摘Under the support of the remote sensing and geographical information system(GIS) techniques,we acquire the land use data in 1990 and 2008 regarding 6 inhabited islands,namely Longxue Island,Hengmen Island,Weiyuan Island,Qi'ao Island,Hengqin Island and Gaolan Island in Pearl River Estuary.By using dynamic degree of land use,land use change intensity,relative change rate and other indicators,we conduct quantitative description,and thus quantitatively and qualitatively analyse characteristics of temporal evolution and law of spatial pattern change concerning land use of each island.The study indicates that in the period 1990-2008,the area of construction land and water in 6 islands increased,while the area of agricultural land and unused land increased in some islands and decreased in others.The land use change shows spatial disparity;the holistic land use change degree in Hengmen Island is higher than that of other islands;the dynamic degree of land use,intensity of land use,and relative change rate differ in different islands.
基金National Natural Science Foundation of China, No.41171107
文摘As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence of the economic development stage and the spatio-temporal evolution process at the prefecture level; this may lead to biased policies and their ineffective implementations. Based on Chenery's economic development theory, this paper identifies China's economic development stages at both national and prefectural levels. Both the Global Moran I index and the Getis-Ord Gi* index are employed to investigate the spatio-temporal evolution of China's economic development from 1990 to 2010. Major conclusions can be drawn as follows. (1) China's economic development is generally in the state of agglomeration. It entered the Primary Production Stage in 1990, and the Middle Industrialized Stage in 2010, with a 'balanced-unbalanced-gradually rebalanced' pattern in the process. (2) China's rapid economic growth experienced a spatial shift from the coastal areas to the the inland areas. Most advanced cities in mid-western China can be roughly categorized into regional hub cities and resource-dependent cities. (3) Hot spots in China's economy moved northward and westward. The interactions between cities and prefectures became weaker in Eastern China, while cities and prefectures in Central and Western China were still at the stage of individual development, with limited effect on the surrounding cities. (4) While the overall growth rate of China's economy has gradually slowed down during the past two decades, the growth rate of cities and prefectures in Central and Western China was much faster than those in coastal areas. (5) Areas rich in resources, such as Xinjiang and Inner Mongolia, have become the new hot spots of economic growth in recent years. For these regions, however, more attention needs to be paid to their unbalanced industrial structures and the lagging social development against the backdrop of the rapid economic growth, driven predominantly by the exploitation of resources.
基金National Key Research and Development Program of China,No.2018YFB1600400Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,No.2017491211Fundamental Research Funds for Central Welfare Research Institutes,No.TKS20200312。
文摘The operation of large-scale reservoirs have modified water and sediment transport processes,resulting in adjustments to the river topography and water levels.The polynomial fitting method was applied to analyze the variation characteristics of water levels under different water discharge values in the Jingjiang reach of the Yangtze River from 1991–2016.The segregation variable method was used to estimate the contributions of the varied riverbed evaluation,the downstream-controlled water level,and the comprehensive roughness on the altered water level at an identical flow.We find that low water levels in the Jingjiang reach of the Yangtze River from 1991–2016 are characterized by a significant downward trend,which has intensified since 2009.Riverbed scouring has been the dominate factor causing the reduced low water level while increased roughness alleviated this reduction.From 1991–2016,there was first a decrease followed by an increase in the high water level.The variation characteristic in terms of the'high flood discharge at a high water level'before 2003 transformed into a'middle flood discharge at a high water level'since 2009.The increased comprehensive roughness was the main reason for the increased high water level,where river scouring alleviated this rise.For navigation conditions and flood control,intensified riverbed scouring of the sandy reaches downstream from dams enhanced the effects that the downstream water level has on the upstream water level.This has led to an insufficient water depth in the reaches below the dams,which should receive immediate attention.The alteredvariation characteristics of the high water level have also increased the flood pressure in the middle reaches of the Yangtze River.
基金funded by the Spark Program of Earthquake Sciences(XH17048)the Task-oriented Earthquake Tracing Project of China Earthquake Administration(2018010505)
文摘In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geometric center of the rupture region and the elliptical centerline of the aftershock region. The result shows, precursor anomalies gradually increased about 2 years before the Wenchuan earthquake. The ratio of abnormal items is greater than 25% in the near source area (about twice the source scale) and 17%-24% in the remote area (about 3-5 times the source scale). There are three different stages of spatiotemporal evolution of precursory anomalies. During the α stage (including α_1 and α_2,between 700 to 3000 days before the main earthquake),the anomalies are mainly distributed in the southwest and northwest area of the Wenchuan aftershocks area. It is shown that the precursors of the far source region and the near source area have the characteristics of outward expansion. During the β stage (between 300 to 700 days before the main earthquake), the anomalies are distributed in the southwest and northern region of the aftershock region, showing a large range of anomalies. During the γ stage (including γ_1 and γ_2, 300 days before the main earthquake),the range of anomaly distribution is wide,and the anomalies are distributed in the southwest and northeast of the aftershock area. The anomalies converged to epicenter (γ_1) in the far source region and expand outwards (γ_2) in the near source region. Results of the experimental study and mechanical analysis of earthquake preparation process indicate that the three-stage characteristics of precursory anomalies in the process of earthquake preparation may be controlled by the seismogenic body,which is a form of expression in the process of earthquake preparation and a universal featureduring the earthquake preparation process,which has a certain guiding role in earthquake prediction.