The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This pap...The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detectio...Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.展开更多
Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses an...Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.展开更多
This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure ...This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.展开更多
Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information ...Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of informatio...Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.展开更多
Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for manag...Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
General Rules Journal of Polyphenols publishes research articles,reviews and short communications in English,on the fields of the science and technology of plant polyphenols.
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio...Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.展开更多
This article attempts to distinguish public relations(PRs)from propaganda,within the context of information management.Speedy dissemination of information is an important feature of contemporary communication practice...This article attempts to distinguish public relations(PRs)from propaganda,within the context of information management.Speedy dissemination of information is an important feature of contemporary communication practice globally.In this era,the information content of communication is an important element requiring critical evaluation.This is so,because of the need to safeguard the information ecosystem,considering the thin line between public relations and propaganda.While both propaganda and public relations aim to shape perceptions,influence attitudes,and sway opinions,one key distinction lies in their ethical considerations.Public relations emphasize honesty,accuracy,accountability,and a commitment to the truth.In contrast,propaganda may involve manipulation,distortion,or even fabrication of information to advance a particular agenda,often at the expense of truth and transparency.Hinged on The Excellence Theory and the Two-Way Symmetrical Model,the paper focuses on the meeting points and differences between public relations and propaganda,with a view to safeguarding the integrity of the information ecosystem.The study adopted the survey research method,with interview as research instrument.The study discovered that while propaganda is not entirely a bad practice,it has a heavy tilt towards bias.It therefore recommends that deliberate steps be taken by relevant professional organisations and other stakeholders towards educating the citizens on ways of distinguishing between public relations and propaganda contents.展开更多
Describe the content and current situation of maternal information needs and support,providing a basis for building maternal information needs assessment tools and improving information support systems.Retrieve articl...Describe the content and current situation of maternal information needs and support,providing a basis for building maternal information needs assessment tools and improving information support systems.Retrieve articles related to the topic from domestic and foreign databases,and ultimately include 54 articles.Summarize from the aspects of information demand content,influencing factors,evaluation tools,and information support channels.We found that the information needs of pregnant women are rich in content,but the existing information support content is limited and the form is single.There is an urgent need to establish scientific and effective information needs assessment tools,as well as diverse information support systems.展开更多
Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the ...Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.展开更多
With the continuous advancement of information technology,traditional teaching management models can no longer meet the demands of modern laboratory management.Information management,characterized by efficiency,conven...With the continuous advancement of information technology,traditional teaching management models can no longer meet the demands of modern laboratory management.Information management,characterized by efficiency,convenience,and intelligence,provides new ideas and directions for reforming laboratory teaching management models in higher education.Based on this,this paper explores reform strategies and practical approaches for laboratory teaching management models from the perspective of information management,aiming to offer references for enhancing the modernization and intelligentization of laboratory teaching management.展开更多
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi...As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.展开更多
This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’...This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.展开更多
文摘The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金National Natural Science Foundation of China(grant numbers 42293351,41877239,51422904 and 51379112).
文摘Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.
文摘Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.
文摘This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.
文摘Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
文摘Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.
文摘Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
文摘General Rules Journal of Polyphenols publishes research articles,reviews and short communications in English,on the fields of the science and technology of plant polyphenols.
基金supported by the Beijing Natural Science Foundation(Certificate Number:L234025).
文摘Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.
文摘This article attempts to distinguish public relations(PRs)from propaganda,within the context of information management.Speedy dissemination of information is an important feature of contemporary communication practice globally.In this era,the information content of communication is an important element requiring critical evaluation.This is so,because of the need to safeguard the information ecosystem,considering the thin line between public relations and propaganda.While both propaganda and public relations aim to shape perceptions,influence attitudes,and sway opinions,one key distinction lies in their ethical considerations.Public relations emphasize honesty,accuracy,accountability,and a commitment to the truth.In contrast,propaganda may involve manipulation,distortion,or even fabrication of information to advance a particular agenda,often at the expense of truth and transparency.Hinged on The Excellence Theory and the Two-Way Symmetrical Model,the paper focuses on the meeting points and differences between public relations and propaganda,with a view to safeguarding the integrity of the information ecosystem.The study adopted the survey research method,with interview as research instrument.The study discovered that while propaganda is not entirely a bad practice,it has a heavy tilt towards bias.It therefore recommends that deliberate steps be taken by relevant professional organisations and other stakeholders towards educating the citizens on ways of distinguishing between public relations and propaganda contents.
文摘Describe the content and current situation of maternal information needs and support,providing a basis for building maternal information needs assessment tools and improving information support systems.Retrieve articles related to the topic from domestic and foreign databases,and ultimately include 54 articles.Summarize from the aspects of information demand content,influencing factors,evaluation tools,and information support channels.We found that the information needs of pregnant women are rich in content,but the existing information support content is limited and the form is single.There is an urgent need to establish scientific and effective information needs assessment tools,as well as diverse information support systems.
基金the financial support from the National Natural Science Foundation of China(Nos.21971040,22171045,and 22371046)。
文摘Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.
文摘With the continuous advancement of information technology,traditional teaching management models can no longer meet the demands of modern laboratory management.Information management,characterized by efficiency,convenience,and intelligence,provides new ideas and directions for reforming laboratory teaching management models in higher education.Based on this,this paper explores reform strategies and practical approaches for laboratory teaching management models from the perspective of information management,aiming to offer references for enhancing the modernization and intelligentization of laboratory teaching management.
基金supported by National Natural Science Foundation of China(Nos.62477026,62177029,61807020)Humanities and Social Sciences Research Program of the Ministry of Education of China(No.23YJAZH047)the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY222034.
文摘As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.
文摘This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.