Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune d...Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune deficiency syndrome.An estimated 10.8 million TB cases were reported globally in 2023,with approximately 1.25 million associated deaths.In China,which ranks third in the global TB burden,there were approximately 741,000 new cases and 25,000 deaths in 2023^([1]).TB poses a significant threat to human health worldwide.展开更多
The dynamics of regional convergence include spatial and temporal dimensions. Spatial Markov chain can be used to explore how regions evolve by considering both individual regions and their geographic neighbors. Based...The dynamics of regional convergence include spatial and temporal dimensions. Spatial Markov chain can be used to explore how regions evolve by considering both individual regions and their geographic neighbors. Based on per capita GDP data set of 77 counties from 1978 to 2000, this paper attempts to investigate the spatial-temporal dynamics of regional convergence in Jiangsu. First, traditional Markov matrix for five per capita GDP classes is constructed for later comparison. Moreover, each region’s spatial lag is derived by averaging all its neighbors’ per capita GDP data. Conditioning on per capita GDP class of its spatial lag at the beginning of each year, spatial Markov transition probabilities of each region are calculated accordingly. Quantitatively, for a poor region, the probability of moving upward is 3.3% if it is surrounded by its poor neighbors, and even increases to 18.4% if it is surrounded by its rich neighbors, but it goes down to 6.2% on average if ignoring regional context. For a rich region, the probability of moving down ward is 1.2% if it is surrounded by its rich neighbors, but increases to 3.0% if it is surrounded by its poor neighbors, and averages 1.5% irrespective of regional context. Spatial analysis of regional GDP class transitions indicates those 10 upward moves of both regions and their neighbors are unexceptionally located in the southern Jiangsu, while downward moves of regions or their neighbors are almost in the northern Jiangsu. These empirical results provide a spatial explanation to the "convergence clubs" detected by traditional Markov chain.展开更多
The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary...The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary Least Squares(OLS),and Geographically weighted regression(GWR)methods are used to systematically analyse the spatial-temporal characteristics and driving forces of land development intensity for 131 spatial units in the western China from 2000 to 2015.The findings of the study are as follows:1)The land development intensity in the western China has been increasing rapidly.From 2000 to 2015,land development intensity increased by 3.4 times on average.2)The hotspot areas have shifted from central Inner Mongolia,northern Shaanxi and the Beibu Gulf of Guangxi to the Guanzhong Plain and the Chengdu-Chongqing urban agglomeration.The areas of cold spots were mainly concentrated in the Qinghai-Tibet Plateau,Yunnan,and Xinjiang.3)Investment intensity and the natural environment have always been the main drivers of land development intensity in the western China.Investment played a powerful role in promoting land development intensity,while the natural and ecological environment distinctly constrained such development.The effect of the economic factors on land development intensity in the western China has changed,which is reflected in the driving factor of construction land development shifting from economic growth in 2000 to economic structure,especially industrial structure,in 2015.展开更多
Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas. In this study, we used the Global Inv...Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas. In this study, we used the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data from 1982 to 2006 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data from 2000 to 2013 to reveal the dynamics of desert vegetation in Hexi region of Northwest China over the past three decades. We also used the annual temperature and precipitation data acquired from the Chinese meteorological stations to analyze the response of desert vegetation to climatic variations. The average value of NDVImax (the maximum NDVI during the growing season) for desert vegetation in Hexi region increased at the rate of 0.65x10-3/a (P〈0.05) from 1982 to 2013, and the significant increases of NDVImax mainly appeared in the typical desert vegetation areas. Vegetation was significantly improved in the lower reaches of Shule and Shiyang river basins, and the weighted mean center of desert vegetation mainly shifted toward the lower reaches of the two basins. Almost 95.32% of the total desert vegetation area showed positive correlation between NDVImax and annual precipitation, indicating that precipitation is the key factor for desert vegetation growth in the entire study area. Moreover, the areas with non-significant positive correlation between NDVImax and annual precipitation mainly located in the lower reaches of Shiyang and Shule river basins, this may be due to human activities. Only 7.64% of the desert vegetation showed significant positive correlation between NDVImax and annual precipitation in the Shule River Basin (an extremely arid area), indicating that precipitation is not the most important factor for vegetation growth in this basin, and further studies are needed to investigate the mechanism for this phenomenon.展开更多
Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures...Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.展开更多
The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving...The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving mechanism have always been widely researched.The Qomolangma National Nature Preserve(QNNP),with the largest altitude difference in the world,was selected as the study area to analyse the spatial-temporal dynamics of grassland coverage and the different characteristics of elevation gradients at the southern slope(SS)and northern slope(NS)with MODIS MOD13Q1 NDVI and MOD11A2 land surface temperature data from 2000to 2019 using the Mann-Kendall trend test and Theil-Sen slope methods.Further,the response mechanism of grassland coverage to climate warming is discussed.The results revealed that from 2000 to 2019,the grassland coverage change in the study area is mainly stable.The increased area proportion of grassland coverage on the southern slope is significantly higher than that on the northern slope,and the decreased area proportion of grassland coverage on the northern slope is significantly greater than that on the southern slope.The change characteristics of grassland coverage in the QNNP exhibit an obvious elevation gradient;the higher the elevation,the greater the increased area proportion of grassland coverage,particularly on the SS.The land surface temperature can be used as a proxy for analysing the temporal and spatial variation trends of air temperature in the QNNP.With the increase of the altitude,the land surface temperature rise rate on both the southern slope and northern slope exhibited an increasing trend,and the sensitivity of grassland coverage to temperature rise was higher on the northern slope.The water condition was the decisive factor for the horizontal and vertical spatial heterogeneity of the dynamic change of grassland coverage,and the melting of glaciers and thawing of permafrost were important sources of water for grassland growth in the QNNP.Climate warming promotes the growth of grassland in areas with a sufficient water supply,but adversely affects the growth of grassland in areas with insufficient water supplies,which will be further intensified by human activities.展开更多
The identification of runoff generating areas (RGAs) within a watershed is a difficult task because of their temporal and spatial behavior. A watershed was selected to investigate the RGAs to determine the factors aff...The identification of runoff generating areas (RGAs) within a watershed is a difficult task because of their temporal and spatial behavior. A watershed was selected to investigate the RGAs to determine the factors affecting spatio-temporally in southern Ontario. The watershed was divided into 8 fields having a Wireless System Network (WSN) and a V-notch weir for flow and soil moisture measurements. The results show that surface runoff is generated by the infiltration excess mechanism in summer and fall, and the saturation excess mechanism in spring. The statistical analysis suggested that the amount of rainfall and rainfall intensity for summer (R2 = 0.63, 0.82) and fall (R2 = 0.74, 0.80), respectively, affected the RGAs. The analysis showed that 15% area generated 85% of surface runoff in summer, 100% of runoff in fall, and 40% of runoff in spring. The methodology developed has potential for identifying RGAs for protecting Ontario’s water resources.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ...Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.展开更多
Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.Howeve...Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e...The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.P...Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1) at 0.2 A g^(−1) under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.展开更多
The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b...The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechan...The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.展开更多
We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the p...We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
文摘Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune deficiency syndrome.An estimated 10.8 million TB cases were reported globally in 2023,with approximately 1.25 million associated deaths.In China,which ranks third in the global TB burden,there were approximately 741,000 new cases and 25,000 deaths in 2023^([1]).TB poses a significant threat to human health worldwide.
基金Under the auspices ofthe National Natural Science Foundation of China (No .40301038)
文摘The dynamics of regional convergence include spatial and temporal dimensions. Spatial Markov chain can be used to explore how regions evolve by considering both individual regions and their geographic neighbors. Based on per capita GDP data set of 77 counties from 1978 to 2000, this paper attempts to investigate the spatial-temporal dynamics of regional convergence in Jiangsu. First, traditional Markov matrix for five per capita GDP classes is constructed for later comparison. Moreover, each region’s spatial lag is derived by averaging all its neighbors’ per capita GDP data. Conditioning on per capita GDP class of its spatial lag at the beginning of each year, spatial Markov transition probabilities of each region are calculated accordingly. Quantitatively, for a poor region, the probability of moving upward is 3.3% if it is surrounded by its poor neighbors, and even increases to 18.4% if it is surrounded by its rich neighbors, but it goes down to 6.2% on average if ignoring regional context. For a rich region, the probability of moving down ward is 1.2% if it is surrounded by its rich neighbors, but increases to 3.0% if it is surrounded by its poor neighbors, and averages 1.5% irrespective of regional context. Spatial analysis of regional GDP class transitions indicates those 10 upward moves of both regions and their neighbors are unexceptionally located in the southern Jiangsu, while downward moves of regions or their neighbors are almost in the northern Jiangsu. These empirical results provide a spatial explanation to the "convergence clubs" detected by traditional Markov chain.
基金Under the auspices of Fundamental Research Funds for the Central University(No.310827171012)National Natural Science Foundation of China(No.41971178+4 种基金3167054931170664)National Key Research&Development Program of China(2017YFC0504705)Open Fund of Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity(No.SKLESS201807)Key Research&Development Program of Shaanxi Province(No.2019SF-245)
文摘The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary Least Squares(OLS),and Geographically weighted regression(GWR)methods are used to systematically analyse the spatial-temporal characteristics and driving forces of land development intensity for 131 spatial units in the western China from 2000 to 2015.The findings of the study are as follows:1)The land development intensity in the western China has been increasing rapidly.From 2000 to 2015,land development intensity increased by 3.4 times on average.2)The hotspot areas have shifted from central Inner Mongolia,northern Shaanxi and the Beibu Gulf of Guangxi to the Guanzhong Plain and the Chengdu-Chongqing urban agglomeration.The areas of cold spots were mainly concentrated in the Qinghai-Tibet Plateau,Yunnan,and Xinjiang.3)Investment intensity and the natural environment have always been the main drivers of land development intensity in the western China.Investment played a powerful role in promoting land development intensity,while the natural and ecological environment distinctly constrained such development.The effect of the economic factors on land development intensity in the western China has changed,which is reflected in the driving factor of construction land development shifting from economic growth in 2000 to economic structure,especially industrial structure,in 2015.
基金supported by the Opening Foundation of the State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating,Gansu Desert Control Research Institute (GSDC201503)the National Natural Science Foundation of China (41271024,31260129,31360204)+1 种基金the Program for Innovative Research Group of Gansu Province,China (1506RJIA155)Lanzhou University for providing Arc GIS technical support in the data processing
文摘Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas. In this study, we used the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data from 1982 to 2006 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data from 2000 to 2013 to reveal the dynamics of desert vegetation in Hexi region of Northwest China over the past three decades. We also used the annual temperature and precipitation data acquired from the Chinese meteorological stations to analyze the response of desert vegetation to climatic variations. The average value of NDVImax (the maximum NDVI during the growing season) for desert vegetation in Hexi region increased at the rate of 0.65x10-3/a (P〈0.05) from 1982 to 2013, and the significant increases of NDVImax mainly appeared in the typical desert vegetation areas. Vegetation was significantly improved in the lower reaches of Shule and Shiyang river basins, and the weighted mean center of desert vegetation mainly shifted toward the lower reaches of the two basins. Almost 95.32% of the total desert vegetation area showed positive correlation between NDVImax and annual precipitation, indicating that precipitation is the key factor for desert vegetation growth in the entire study area. Moreover, the areas with non-significant positive correlation between NDVImax and annual precipitation mainly located in the lower reaches of Shiyang and Shule river basins, this may be due to human activities. Only 7.64% of the desert vegetation showed significant positive correlation between NDVImax and annual precipitation in the Shule River Basin (an extremely arid area), indicating that precipitation is not the most important factor for vegetation growth in this basin, and further studies are needed to investigate the mechanism for this phenomenon.
基金supported by the National Basic Research Program of China(2012CB417001)the National Natural Science Foundation of China(41271125)
文摘Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0301 and 2019QZKK0307)。
文摘The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving mechanism have always been widely researched.The Qomolangma National Nature Preserve(QNNP),with the largest altitude difference in the world,was selected as the study area to analyse the spatial-temporal dynamics of grassland coverage and the different characteristics of elevation gradients at the southern slope(SS)and northern slope(NS)with MODIS MOD13Q1 NDVI and MOD11A2 land surface temperature data from 2000to 2019 using the Mann-Kendall trend test and Theil-Sen slope methods.Further,the response mechanism of grassland coverage to climate warming is discussed.The results revealed that from 2000 to 2019,the grassland coverage change in the study area is mainly stable.The increased area proportion of grassland coverage on the southern slope is significantly higher than that on the northern slope,and the decreased area proportion of grassland coverage on the northern slope is significantly greater than that on the southern slope.The change characteristics of grassland coverage in the QNNP exhibit an obvious elevation gradient;the higher the elevation,the greater the increased area proportion of grassland coverage,particularly on the SS.The land surface temperature can be used as a proxy for analysing the temporal and spatial variation trends of air temperature in the QNNP.With the increase of the altitude,the land surface temperature rise rate on both the southern slope and northern slope exhibited an increasing trend,and the sensitivity of grassland coverage to temperature rise was higher on the northern slope.The water condition was the decisive factor for the horizontal and vertical spatial heterogeneity of the dynamic change of grassland coverage,and the melting of glaciers and thawing of permafrost were important sources of water for grassland growth in the QNNP.Climate warming promotes the growth of grassland in areas with a sufficient water supply,but adversely affects the growth of grassland in areas with insufficient water supplies,which will be further intensified by human activities.
文摘The identification of runoff generating areas (RGAs) within a watershed is a difficult task because of their temporal and spatial behavior. A watershed was selected to investigate the RGAs to determine the factors affecting spatio-temporally in southern Ontario. The watershed was divided into 8 fields having a Wireless System Network (WSN) and a V-notch weir for flow and soil moisture measurements. The results show that surface runoff is generated by the infiltration excess mechanism in summer and fall, and the saturation excess mechanism in spring. The statistical analysis suggested that the amount of rainfall and rainfall intensity for summer (R2 = 0.63, 0.82) and fall (R2 = 0.74, 0.80), respectively, affected the RGAs. The analysis showed that 15% area generated 85% of surface runoff in summer, 100% of runoff in fall, and 40% of runoff in spring. The methodology developed has potential for identifying RGAs for protecting Ontario’s water resources.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
文摘Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.
基金supported by the Guangdong Provincial Key Area Research and Development Program[grant number 2022B0202090002]China Postdoctoral Science Foundation[grant number 2024M760977].
文摘Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金supported by the National Natural Science Foundation of China(52304021,52104022,52204031)the Natural Science Foundation of Sichuan Province(2022NSFSC0205,2024NSFSC0201,2023NSFSC0947)the National Science and Technology Major Projects of China(2017ZX05049006-010).
文摘The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
基金supported by the project of the National Natural Science Foundation of China(52202115 and 52172101)Guangdong Basic and Applied Basic Research Foundation(2024A1515012325)+2 种基金the Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX1085)the Shaanxi Science and Technology Innovation Team(2023-CXTD-44)the Fundamental Research Funds for the Central Universities(G2022KY0604).
文摘Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1) at 0.2 A g^(−1) under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.
文摘The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
基金Foundation of Northwest Institute for Nonferrous Metal Research(ZZXJ2203)Capital Projects of Financial Department of Shaanxi Province(YK22C-12)+3 种基金Innovation Capability Support Plan in Shaanxi Province(2023KJXX-083)Key Research and Development Projects of Shaanxi Province(2024GXYBXM-351,2024GX-YBXM-356)National Natural Science Foundation of China(62204207,12204383)Xi'an Postdoctoral Innovation Base Funding Program。
文摘The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.
基金supported by the National Key R&D Program of China (Grant No. 2024YFA1408502)the National Natural Science Foundation of China (Grant Nos. 92365102, 62027807, 12474107, and 12174383)+1 种基金the Chinese Academy of Sciences project for Yong Scientists in Basic Research (Grant No. YSBR-030)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515011600)。
文摘We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.