As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps i...Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus...The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.展开更多
The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertai...The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio...Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.展开更多
Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequenc...Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequence of any k many Legendre sequences and show that the 2-adic complexity of the sum sequences of any k many Legendre sequences reaches the maximum by proving the case of k=2 and 3,which implies that the sum sequences can resist the attack of rational approximation algorithm.展开更多
Traditionally,passenger comfort in vehicles is perceived as being most influenced by acceleration and jerk.Consequently,the current research primarily focuses on developing control algorithms to limit the maximum acce...Traditionally,passenger comfort in vehicles is perceived as being most influenced by acceleration and jerk.Consequently,the current research primarily focuses on developing control algorithms to limit the maximum acceleration and jerk of the vehicle in order to improve passenger comfort.However,naturalistic driving studies demonstrate that such simple characteristics are insufficient for accurately evaluating passenger comfort.This study identifies motion complexity as a key factor of passenger comfort.A series of naturalistic driving studies are conducted,during which passenger comfort is assessed using a 5-point Likert scale.Moreover,a real-time passenger comfort measurement based on electromyography(EMG)and stepwise regression is proposed to facilitate seamless data collection.Time-series features representing motion complexity are then introduced to better describe passenger comfort.Hierarchical regression confirms that simple characteristics of motion are insufficient to explain passenger comfort,and shows that the proposed motion complexity features have a substantial effect on passenger comfort.Finally,a machine learning-based real-time passenger comfort estimation method is developed according to the foregoing findings.Experimental results show that the proposed method can accurately estimate passenger comfort in real-time using only vehicle motion information.The findings of this study suggest that vehicle motion complexity should be considered in future passenger comfort studies.展开更多
Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the...Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
This study examined how psychological meaningfulness moderates job complexity and work-family conflict in Nigerian secondary school teachers.This study included 1694 teachers from 17 Nigerian secondary schools(female=6...This study examined how psychological meaningfulness moderates job complexity and work-family conflict in Nigerian secondary school teachers.This study included 1694 teachers from 17 Nigerian secondary schools(female=69.54%,mean age=33.19,SD=6.44 years).The participants completed the Work-family Conflict Scale,Job Complexity Scale,and Psychological Meaningfulness Scale.Study design was cross-sectional.Hayes PROCESS macro analysis results indicate a higher work-family conflict with job complexity among the secondary school teachers.While psychological meaningfulness was not associated with work-family conflict,it moderated the link between job complexity and work-family conflict in secondary school teachers such that a meaningful work endorsement is associated with lower employee’s work-life conflict.Thesefindings point to the importance of job functions to quality of family life.The studyfindings also suggest a need for supporting psychological meaningfulness for healthy work related quality of family life based on balancing work and family role demands.展开更多
BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To c...BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To comprehensively evaluate the impact of three-dimensional(3D)visualization technology on enhancing surgical precision and safety,as well as optimizing perioperative outcomes in laparoscopic sigmoid cancer resection.METHODS A prospective cohort of 106 patients(January 2023 to December 2024)undergoing laparoscopic sigmoid cancer resection was divided into the 3D(n=55)group and the control(n=51)group.The 3D group underwent preoperative enhanced computed tomography reconstruction(3D Slicer 5.2.2&Mimics 19.0).3D reconstruction visualization navigation intraoperatively guided the following key steps:Tumor location,Toldt’s space dissection,IMA ligation level selection,regional lymph node dissection,and marginal artery preservation.Outcomes included operative parameters,lymph node yield,and recovery metrics.RESULTS The 3D group demonstrated a significantly shorter operative time(172.91±20.69 minutes vs 190.29±32.29 minutes;P=0.002),reduced blood loss(31.5±11.8 mL vs 44.1±23.4 mL,P=0.001),earlier postoperative flatus(2.23±0.54 days vs 2.53±0.61 days;P=0.013),shorter hospital length of stay(13.47±1.74 days vs 16.20±7.71 days;P=0.013),shorter postoperative length of stay(8.6±2.6 days vs 10.5±4.9 days;P=0.014),and earlier postoperative exhaust time(2.23±0.54 days vs 2.53±0.61 days;P=0.013).Furthermore,the 3D group exhibited a higher mean number of lymph nodes harvested(16.91±5.74 vs 14.45±5.66;P=0.030).CONCLUSION The 3D visualization technology effectively addresses sigmoid colon anatomical complexity through surgical navigation,improving procedural safety and efficiency.展开更多
Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability ...Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability of surrounding microbiomes have still not been de-termined.Here,the prokaryotic microbial community network stability and assembly char-acteristics were systematically analyzed and compared between the green tide and non-green tide periods.U.prolifera blooms weaken the community complexity and robustness of surrounding microbiomes,increasing fragmentation and decreasing diversity.Bacteria and archaea exhibited distinct community distributions and assembly patterns under the influ-ence of green tides,and bacterial communities were more sensitive to outbreaks of green tides.The bacterial communities exhibited a greater niche breadth and a lower phyloge-netic distance during the occurrence of U.prolifera green tides compared to those during the non-green tide period while archaeal communities remained unchanged,suggesting that the bacterial communities underwent stronger homogeneous selection and more sensitive to green tide blooms than the archaeal communities.Piecewise structural equation model analysis revealed that the different responses of major prokaryotic microbial groups,such as Cyanobacteria,to environmental variables during green tides,were influenced by the variations in pH and nitrate during green tides and correlated with the salinity gradient during the non-green tide period.This study elucidates the response of the adaptability,associations,and stability of surrounding microbiomes to outbreaks of U.prolifera green tides.展开更多
Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localizati...Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.展开更多
Existing literature indicates that prolonged insertion time is associated with procedural complexity and may influence adenoma detection.Xu et al recently reported that longer insertion time correlates with lower aden...Existing literature indicates that prolonged insertion time is associated with procedural complexity and may influence adenoma detection.Xu et al recently reported that longer insertion time correlates with lower adenoma detection,but this effect can be mitigated by sufficient withdrawal duration.Insertion time should not be regarded merely as a numeric variable but rather as a multidimensional marker of technical difficulty.Integrating the insertion-to-withdrawal ratio with composite indicators such as looping or bowel preparation quality may enhance predictive models of colonoscopy performance.Conceptualizing insertion time in this way provides a more nuanced understanding of its role in adenoma detection and highlights the need for improved frameworks that link procedural complexity with quality outcomes.展开更多
The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for...The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.展开更多
Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structura...Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structural components drive arthropod abundance and biomass remains poorly understood in temperate forests.This study examined how local and landscape-scale forest characteristics influence arthropod communities across vertical strata(forest floor(FF),herb layer(HL),and shrub layer(SL))in 19 temperate deciduous forests in Belgium,dominated by pedunculate oak,European beech,or Canadian poplar.At the local scale,we assessed dominant tree species identity,overall forest structural complexity,and its components(vertical and horizontal structure,woody layer,herbal layer,and deadwood).At the landscape scale,we evaluated forest area,edge length,forest cover,and vegetation greenness(normalized difference vegetation index(NDVI)).Contrary to expectation,arthropod biomass and abundance did not consistently increase with higher structural complexity.Instead,woody layer complexity,dominant tree species,and NDVI emerged as key drivers,with effects varying by context and stratum.Arthropod abundance and biomass were the highest in oak-and poplar-dominated forests and the lowest in beech forests,likely due to differences in litter quality,microhabitat availability,and understory development.Woody layer complexity positively influenced forest floor arthropods in poplar forests but had a negative effect in oak forests.At the landscape scale,NDVI unexpectedly showed negative relationships with arthropod abundance across strata and with arthropod biomass in the herb layer,likely reflecting dense canopy suppression of understory productivity.Arthropod biomass on the forest floor increased with forest cover,while abundance in the shrub layer decreased with forest cover but increased with forest area.These findings highlight the complex interplay between forest structural attributes,dominant tree species,and landscape factors in shaping arthropod communities.By identifying the key drivers of arthropod abundance and biomass,this study contributes to a better understanding of biodiversity patterns in temperate forests and their ecological dynamics.展开更多
Coastal wetlands store large amounts of soil organic carbon(SOC),and have assumed key roles in mitigating increasing CO_(2)in the atmosphere.The ongoing debate about SOC stabilization mechanisms stems partly from our ...Coastal wetlands store large amounts of soil organic carbon(SOC),and have assumed key roles in mitigating increasing CO_(2)in the atmosphere.The ongoing debate about SOC stabilization mechanisms stems partly from our incomplete understanding of its complex chemical architecture at the molecular scale.Deciphering the molecular composition of soil organic matter is crucial for revealing mechanisms that govern SOC persistence.This study utilized the field sampling data from 2016 and aimed to characterize molecular composition of SOC in typical salt marsh(SM)and freshwater marsh(FM)in Louisiana coastal regions,USA by extending the application of graph networks with pyrolysis-gas chromatography-mass spectrometry,and then to quantify potential links between SOC persistence and molecular diversity and network complexity.The results revealed that SOC predominantly consisted of alkyl compounds(Alkyl),phenol(Ph),lignin(Lg),and aliphatic compounds,constituting 23.21%and 27.85%,17.84%and 21.55%,16.94%and 15.49%,17.20%and 15.93%of total ion chromatogram(TIC)in SM and FM wetlands,respectively.Molecular diversity in SM was higher than that in FM,while the network graph exhibited greater complexity in FM,featuring 167 and 123 nodes,and 1935 and 1982 edges in the network graphs of SOC from SM and FM,respectively.Correlation analysis confirmed positive relations between molecular diversity indices,network complexity,and abundance of stable carbon isotopes(δ^(13)C).The variance partitioning analysis(VPA)supplied that soil nutrients exerted the most significant control on SOC persistence.Molecular diversity and network complexity,when combined with soil nutrients,could explain 34%of the variances in SOC persistence.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金National Natural Science Foundation of China(No.42301518)Hubei Key Laboratory of Regional Development and Environmental Response(No.2023(A)002)Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources(Ministry of Education)(No.TDSYS202304).
文摘Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179,11875042,and 12150410309)the Natural Science Foundation of Shanghai(Grant No.21ZR1443900).
文摘The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.
文摘The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the Beijing Natural Science Foundation(Certificate Number:L234025).
文摘Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.
文摘Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequence of any k many Legendre sequences and show that the 2-adic complexity of the sum sequences of any k many Legendre sequences reaches the maximum by proving the case of k=2 and 3,which implies that the sum sequences can resist the attack of rational approximation algorithm.
基金Supported by National Natural Science Foundation of China(Grant No.52221005)Tsinghua-Toyota Joint Research Fund.
文摘Traditionally,passenger comfort in vehicles is perceived as being most influenced by acceleration and jerk.Consequently,the current research primarily focuses on developing control algorithms to limit the maximum acceleration and jerk of the vehicle in order to improve passenger comfort.However,naturalistic driving studies demonstrate that such simple characteristics are insufficient for accurately evaluating passenger comfort.This study identifies motion complexity as a key factor of passenger comfort.A series of naturalistic driving studies are conducted,during which passenger comfort is assessed using a 5-point Likert scale.Moreover,a real-time passenger comfort measurement based on electromyography(EMG)and stepwise regression is proposed to facilitate seamless data collection.Time-series features representing motion complexity are then introduced to better describe passenger comfort.Hierarchical regression confirms that simple characteristics of motion are insufficient to explain passenger comfort,and shows that the proposed motion complexity features have a substantial effect on passenger comfort.Finally,a machine learning-based real-time passenger comfort estimation method is developed according to the foregoing findings.Experimental results show that the proposed method can accurately estimate passenger comfort in real-time using only vehicle motion information.The findings of this study suggest that vehicle motion complexity should be considered in future passenger comfort studies.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGS24D010004)the National Natural Science Foundation of China grant(No.42307064)+2 种基金the National Students’platform for innovation and entrepreneurship training program(No.202410346054)Hangzhou“Young science and technology talent cultivation”project(No.4305F45623004)the Fundamental Research Funds for Climbing Project from Hangzhou Normal University(No.KYQD-2023-217).
文摘Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
文摘This study examined how psychological meaningfulness moderates job complexity and work-family conflict in Nigerian secondary school teachers.This study included 1694 teachers from 17 Nigerian secondary schools(female=69.54%,mean age=33.19,SD=6.44 years).The participants completed the Work-family Conflict Scale,Job Complexity Scale,and Psychological Meaningfulness Scale.Study design was cross-sectional.Hayes PROCESS macro analysis results indicate a higher work-family conflict with job complexity among the secondary school teachers.While psychological meaningfulness was not associated with work-family conflict,it moderated the link between job complexity and work-family conflict in secondary school teachers such that a meaningful work endorsement is associated with lower employee’s work-life conflict.Thesefindings point to the importance of job functions to quality of family life.The studyfindings also suggest a need for supporting psychological meaningfulness for healthy work related quality of family life based on balancing work and family role demands.
基金Supported by the Health Commission of Fuyang City,Anhui,China,No.FY2023-45Fuyang Municipal Science and Technology Bureau,Anhui,China,No.FK20245505+1 种基金Anhui Provincial Health Commission,No.AHWJ2023Baa20164Bengbu Medical University,No.2023byzd215.
文摘BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To comprehensively evaluate the impact of three-dimensional(3D)visualization technology on enhancing surgical precision and safety,as well as optimizing perioperative outcomes in laparoscopic sigmoid cancer resection.METHODS A prospective cohort of 106 patients(January 2023 to December 2024)undergoing laparoscopic sigmoid cancer resection was divided into the 3D(n=55)group and the control(n=51)group.The 3D group underwent preoperative enhanced computed tomography reconstruction(3D Slicer 5.2.2&Mimics 19.0).3D reconstruction visualization navigation intraoperatively guided the following key steps:Tumor location,Toldt’s space dissection,IMA ligation level selection,regional lymph node dissection,and marginal artery preservation.Outcomes included operative parameters,lymph node yield,and recovery metrics.RESULTS The 3D group demonstrated a significantly shorter operative time(172.91±20.69 minutes vs 190.29±32.29 minutes;P=0.002),reduced blood loss(31.5±11.8 mL vs 44.1±23.4 mL,P=0.001),earlier postoperative flatus(2.23±0.54 days vs 2.53±0.61 days;P=0.013),shorter hospital length of stay(13.47±1.74 days vs 16.20±7.71 days;P=0.013),shorter postoperative length of stay(8.6±2.6 days vs 10.5±4.9 days;P=0.014),and earlier postoperative exhaust time(2.23±0.54 days vs 2.53±0.61 days;P=0.013).Furthermore,the 3D group exhibited a higher mean number of lymph nodes harvested(16.91±5.74 vs 14.45±5.66;P=0.030).CONCLUSION The 3D visualization technology effectively addresses sigmoid colon anatomical complexity through surgical navigation,improving procedural safety and efficiency.
基金supported by the National Key Research and Development Program of China(No.2022YFC2807500)Laoshan Laboratory(No.LSKJ202203201)+1 种基金the National Natural Science Foundation of China(Nos.42206147,42120104006 and 42176111)the Natural Science Foundation of Shandong Province(Nos.ZR2022QD046,ZR2021QD051).
文摘Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability of surrounding microbiomes have still not been de-termined.Here,the prokaryotic microbial community network stability and assembly char-acteristics were systematically analyzed and compared between the green tide and non-green tide periods.U.prolifera blooms weaken the community complexity and robustness of surrounding microbiomes,increasing fragmentation and decreasing diversity.Bacteria and archaea exhibited distinct community distributions and assembly patterns under the influ-ence of green tides,and bacterial communities were more sensitive to outbreaks of green tides.The bacterial communities exhibited a greater niche breadth and a lower phyloge-netic distance during the occurrence of U.prolifera green tides compared to those during the non-green tide period while archaeal communities remained unchanged,suggesting that the bacterial communities underwent stronger homogeneous selection and more sensitive to green tide blooms than the archaeal communities.Piecewise structural equation model analysis revealed that the different responses of major prokaryotic microbial groups,such as Cyanobacteria,to environmental variables during green tides,were influenced by the variations in pH and nitrate during green tides and correlated with the salinity gradient during the non-green tide period.This study elucidates the response of the adaptability,associations,and stability of surrounding microbiomes to outbreaks of U.prolifera green tides.
文摘Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.
文摘Existing literature indicates that prolonged insertion time is associated with procedural complexity and may influence adenoma detection.Xu et al recently reported that longer insertion time correlates with lower adenoma detection,but this effect can be mitigated by sufficient withdrawal duration.Insertion time should not be regarded merely as a numeric variable but rather as a multidimensional marker of technical difficulty.Integrating the insertion-to-withdrawal ratio with composite indicators such as looping or bowel preparation quality may enhance predictive models of colonoscopy performance.Conceptualizing insertion time in this way provides a more nuanced understanding of its role in adenoma detection and highlights the need for improved frameworks that link procedural complexity with quality outcomes.
文摘The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.
基金supported by the UGent GOA project“Forest biodiversity and multifunctionality drive chronic stress-mediated dynamics in pathogen reservoirs(FORESTER)”(No.BOF20/GOA/009).
文摘Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structural components drive arthropod abundance and biomass remains poorly understood in temperate forests.This study examined how local and landscape-scale forest characteristics influence arthropod communities across vertical strata(forest floor(FF),herb layer(HL),and shrub layer(SL))in 19 temperate deciduous forests in Belgium,dominated by pedunculate oak,European beech,or Canadian poplar.At the local scale,we assessed dominant tree species identity,overall forest structural complexity,and its components(vertical and horizontal structure,woody layer,herbal layer,and deadwood).At the landscape scale,we evaluated forest area,edge length,forest cover,and vegetation greenness(normalized difference vegetation index(NDVI)).Contrary to expectation,arthropod biomass and abundance did not consistently increase with higher structural complexity.Instead,woody layer complexity,dominant tree species,and NDVI emerged as key drivers,with effects varying by context and stratum.Arthropod abundance and biomass were the highest in oak-and poplar-dominated forests and the lowest in beech forests,likely due to differences in litter quality,microhabitat availability,and understory development.Woody layer complexity positively influenced forest floor arthropods in poplar forests but had a negative effect in oak forests.At the landscape scale,NDVI unexpectedly showed negative relationships with arthropod abundance across strata and with arthropod biomass in the herb layer,likely reflecting dense canopy suppression of understory productivity.Arthropod biomass on the forest floor increased with forest cover,while abundance in the shrub layer decreased with forest cover but increased with forest area.These findings highlight the complex interplay between forest structural attributes,dominant tree species,and landscape factors in shaping arthropod communities.By identifying the key drivers of arthropod abundance and biomass,this study contributes to a better understanding of biodiversity patterns in temperate forests and their ecological dynamics.
基金Under the auspices of National Natural Science Foundation of China(No.42371061,U20A2083)。
文摘Coastal wetlands store large amounts of soil organic carbon(SOC),and have assumed key roles in mitigating increasing CO_(2)in the atmosphere.The ongoing debate about SOC stabilization mechanisms stems partly from our incomplete understanding of its complex chemical architecture at the molecular scale.Deciphering the molecular composition of soil organic matter is crucial for revealing mechanisms that govern SOC persistence.This study utilized the field sampling data from 2016 and aimed to characterize molecular composition of SOC in typical salt marsh(SM)and freshwater marsh(FM)in Louisiana coastal regions,USA by extending the application of graph networks with pyrolysis-gas chromatography-mass spectrometry,and then to quantify potential links between SOC persistence and molecular diversity and network complexity.The results revealed that SOC predominantly consisted of alkyl compounds(Alkyl),phenol(Ph),lignin(Lg),and aliphatic compounds,constituting 23.21%and 27.85%,17.84%and 21.55%,16.94%and 15.49%,17.20%and 15.93%of total ion chromatogram(TIC)in SM and FM wetlands,respectively.Molecular diversity in SM was higher than that in FM,while the network graph exhibited greater complexity in FM,featuring 167 and 123 nodes,and 1935 and 1982 edges in the network graphs of SOC from SM and FM,respectively.Correlation analysis confirmed positive relations between molecular diversity indices,network complexity,and abundance of stable carbon isotopes(δ^(13)C).The variance partitioning analysis(VPA)supplied that soil nutrients exerted the most significant control on SOC persistence.Molecular diversity and network complexity,when combined with soil nutrients,could explain 34%of the variances in SOC persistence.