To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ...To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.展开更多
Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discusse...Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discussed. The results show that evolutions of tidal flats throughout the Huanghe River Delta are influenced by various factors, and that progressive succession and regression of tidal flats concur in different coastal segments of the delta. Human activities have played an increasingly important role in the succession process of tidal flats. Due to land reclamation in coastal zones of the delta in the last 15 years, lots of tidal flats were occupied, the artificial coastline migrated seaward (the maximum change rate was 0.8 kmyr-1) and tidal creeks became sparser (the highest decreasing rate of length of tidal creeks was 14.9 kmyr-1). Except for two coastal segments from the Tiaohe Estuary to the 106 Station and from the south of the Huanghe River mouth to the north of the Xiaodao River Estuary, fractal dimension values of tidal creeks in the remaining coastal segments of the delta decreased. In addition, the time dimension, sediment fluxes into the sea, waves and tidal-currents have profound influences on the evolution process of tidal flats. Four types of tidal flats-river-dominated tidal flats, tide-dominated tidal flats, wave-dominated tidal flats and man-dominated tidal flats can be identified. Owing to the intensification of human activities in coastal zones of the delta, man-dominated tidal flats have become the main kind of tidal flats.展开更多
Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different character...Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.展开更多
Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in ti...Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in time, but also obtain the great significance of the future management. In this study, taking Changsha-Zhuzhou-Xiangtan(Chang-Zhu-Tan) urban agglomeration in Hunan province as a study area, Landsat images from 1995 to 2014 and Autologistic-CLUE-S model simulation data were used. Moreover, several factors including gravity center, direction, distance and landscape index were considered in the analysis of the expansion. The results revealed that the construction area increased by 132.18%, from 372.28 km^2 in 1995 to 864.37 km^2 in 2014. And it might even reach 1327.23 km^2 in 2023. Before 2014, three cities had their own respective and discrete development directions. However, because of the integration policy implementation in 2008, the Chang-Zhu-Tan began to gather, the gravity center moved southward after 2014, and the distance between cities decreased, which was in line with the development plan of urban expansion. The research methods and results were relatively reliable, and these results could provide some reference for the future land use planning and spatial allocation in the urbanization process of Chang-Zhu-Tan urban agglomeration.展开更多
The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the ...The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the Landsat TM and ETM data of 1990 and 2000 respectively, we analyzed the spatial-temporal characteristics of land use/cover changes in the Dongting Lake area during the last decade. The result shows that during the last ten years there were three land-use types that had changed remarkably. The cultivated land decreased by 0.57% of the total cultivated land. The built-up land and water area expanded, with an increase of 8.97% and 0.43% respectively. The conversion between land use types mostly happened among these three land-use types, especially frequently between cultivated land and water area. The land-use change speed of land-use type is different. Three cities experienced the greatest degree of land-use change among all the administrative districts, which means that the land use in these cities changed much quickly. The following changed area was the west and south of the Dongting Lake area. The slowest changed area is the north and east area.展开更多
A ten-year chlorophyll-a concentration dataset from Moderate Resolution Imaging Spectro-radiometer(MODIS) were used to analyze the variation of phytoplankton biomass and its potential relation with climate in the East...A ten-year chlorophyll-a concentration dataset from Moderate Resolution Imaging Spectro-radiometer(MODIS) were used to analyze the variation of phytoplankton biomass and its potential relation with climate in the East China Sea. The result indicated that the phytoplankton biomass generally had a regular pattern every year, and phytoplankton bloom mainly occurred between May and July. The highest phytoplankton biomass appeared near the Yangtze River Estuary. The lowest phytoplankton biomass located near the Taiwan Strait. In general, the starting bloom time was earlier in the south than in the north, and the span time of the former was also longer. During the recent ten years, the phytoplankton biomass around the Yangtze River Estuary decreased obviously. The change of phytoplankton biomass was found to be related with the Ni?o3.4 Index. The correlation between the intensity of phytoplankton bloom with the number and square of red tide were 0.63 and 0.74, respectively.展开更多
Yushu Tibetan Autonomous Prefecture, an area located in the Qinghai-Tibet Plateau, is an area very sensitive to global climate change. Due to impacts from climate change and human disturbances, grassland vegetation in...Yushu Tibetan Autonomous Prefecture, an area located in the Qinghai-Tibet Plateau, is an area very sensitive to global climate change. Due to impacts from climate change and human disturbances, grassland vegetation in the area has been degraded and desertification has been expanding. Ecosystems in the area are very sensitive and fragile and ecological problems have become increasingly serious in the area, resulting in an adverse effect on the local socio-economic development and environment of Qinghai province. Using data gathered from Landsat TM/ETM images for 1987, 1997 and 2007, we analyzed landscape patterns across Yushu Prefecture. Spatial structure indices indicated that: (i) the area of grassland has significantly decreased in the form of degradation and conversion from grassland into bare land and farmland; (ii) grassy vegetation patches changed into fragmented and isolated patches; (iii) the main landscapes in Yushu Prefecture are grasslands, forests and rivers; (iv) patches of grass have reiatively high connectivity; and (v) landscape change is significantly correlated with human activities and climate change. This study provides a strong theoretical and technical basis for policy-making regarding environmental protection of and management in Yushu Prefecture of Qinghai Province.展开更多
Regional land use changes are an important part of global changes.The research on land use changes in the Three Gorges Reservoir Area of China attracts a lot of attention owing to the Three Gorges Dam building.The Thr...Regional land use changes are an important part of global changes.The research on land use changes in the Three Gorges Reservoir Area of China attracts a lot of attention owing to the Three Gorges Dam building.The Three Gorges Reservoir Area becomes one of the important research areas.This study analyzed the transforming processes and traits of each land use type and the regional differences of land use changes during the past 30 years,summarized the distribution of different land use types in different buffer zones and regresses the equation areas and different buffer distances based on buffer analyses and regression analyses,and then analyzed the transforming rules in different buffer distances,got the optimal influence distances.The research results indicate that,(1) cultivated land lies at the northwest of the reservoir and was decreasing,however,the construction land was increasing,especially the urban construction land,a large number of land was flooded because of the reservoir water level rise;(2) urban area was sprawling quickly in developed and neighboring areas,and a great deal of cultivated land and a considerable amount of grassland were occupied;in the earlier time,rural settlements occupied lots of cultivated land and a sum of forestry land in the later time;(3) the optimum influenced distances for cultivated land and forestry land were 10-35 km,and for urban and rural settlements were in 5-20 km.Overall,this research can reflect the spatial-temporal characteristics of land use changes during the 30 years,and it is helpful for urban planning and land use planning in the reservoir area.展开更多
Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological prote...Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.展开更多
Existing literature is characterized by certain deficiencies in measuring housing bubbles in China. By extending the analytical framework of Black et al. (2006) to a spatial panel VAR structure, this paper measures ...Existing literature is characterized by certain deficiencies in measuring housing bubbles in China. By extending the analytical framework of Black et al. (2006) to a spatial panel VAR structure, this paper measures housing bubbles in China's 35 major cities from 1999Q2 to 2012Q3 and analyzes the spatial-temporal changes of the housing bubbles in these cities. Results indicate that 1) changes to housing bubbles in most cities highly correspond with changes in the main real estate policies of the country and 2) housing bubbles in eastern developed cities such as Beijing, Shanghai, Shenzhen, Hangzhou, and Ningbo, have been relatively large in recent years although the average housing bubble is not very serious over the 35 major cities. Through the Kernel Density Function and local indicators of spatial autocorrelation analysis, this paper finds that housing bubbles are concentrated in several eastern developed cities. Based on empirical analysis, this paper proposes policy recommendations on inhibiting the expansion and diffusion of housing bubbles.展开更多
The authors use a web crawler to retrieve all periodical articles from CNKI between the 1950 s and 2016 and then parse the abstracts of 293368 articles about grassland deterioration by word segmentation, location matc...The authors use a web crawler to retrieve all periodical articles from CNKI between the 1950 s and 2016 and then parse the abstracts of 293368 articles about grassland deterioration by word segmentation, location matching and other methods. The authors also construct a research hot regions extraction model of grassland deterioration in China based on a comprehensive research hot regions index of toponyms and then analyze the spatial pattern and dynamic change in research hot regions of grassland deterioration in China. The research shows the following:(1) The spatial heterogeneity of grassland deterioration in China can be effectively described by a model of grassland deterioration based on the comprehensive research hot regions index.(2) The research hot regions of grassland deterioration are mainly distributed in most regions of Inner Mongolia, Xinjiang, Qinghai, Tibet, Gansu and other provinces. The northeastern region of Inner Mongolia(such as Hulunbeier) and the eastern region of Inner Mongolia(such as Xilin Gol, Chifeng and Wulanchabu) are significant hot regions in the study of grassland deterioration.(3) The number of high research hot regions increases from 81 in the 1950 s to 99 in the 2000s; the area increases from 1.038 million km2 to 1.146 million km2. The degree of hot for grassland deterioration research in 197 counties showed an upward trend. This paper also discusses the relationship between the region of research hot regions and the region of grassland deterioration and then indicates the differences between them in time matching, space matching and concept matching.展开更多
Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monito...Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery...BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.展开更多
As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-govern...As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-government water resource management,and inefficient water use.Existing research has predominantly focused on individual hydrological processes,such as glacier retreat,snow cover change,or transboundary water issues,but it has yet to fully capture the overall complexity of water system.Tajikistan’s water system functions as an integrated whole from mountain runoff to downstream supply,but a comprehensive study of its water resource has yet to be conducted.To address this research gap,this study systematically examined the status,challenges,and sustainable management strategies of Tajikistan’s water resources based on a literature review,remote sensing data analysis,and case studies.Despite Tajikistan’s relative abundance of water resources,global warming is accelerating glacier melting and altering the hydrological cycles,which have resulted in unstable runoff patterns and heightened risks of extreme events.In Tajikistan,outdated infrastructure and poor management are primary causes of low water-use efficiency in the agricultural sector,which accounts for 85.00%of the total water withdrawals.At the governance level,Tajikistan faces challenges in balancing the water-energy-food nexus and transboundary water resource issues.To address these issues,this study proposes core paths for Tajikistan to achieve sustainable water resource management,such as accelerating technological innovation,promoting water-saving agricultural technologies,improving water resource utilization efficiency,and establishing a community participation-based comprehensive management framework.Additionally,strengthening cross-border cooperation and improving real-time monitoring systems have been identified as critical steps to advance sustainable water resource utilization and evidence-based decision-making in Tajikistan and across Central Asia.展开更多
This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis...This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.展开更多
This study examined the role of green energy development in mitigating climate change and fostering sustainable development in Central Asia including Kazakhstan,Uzbekistan,Kyrgyzstan,Tajikistan,and Turkmenistan.The re...This study examined the role of green energy development in mitigating climate change and fostering sustainable development in Central Asia including Kazakhstan,Uzbekistan,Kyrgyzstan,Tajikistan,and Turkmenistan.The region has substantial untapped potential in solar energy,wind energy,hydropower energy,as well as biomass and bioenergy,positioning it strategically for renewable energy deployment.The result demonstrated that integrating renewable energy can reduce greenhouse gas emissions,improve air quality,enhance energy security,and support rural development.Case studies from Kazakhstan,Uzbekistan,Kyrgyzstan,and Tajikistan showed measurable environmental and economic benefits.However,the large-scale use of renewable energy still faces numerous barriers,including outdated infrastructure,fragmented regulatory frameworks,limited investment,and shortages of technical expertise.Overcoming these obstacles requires institutional reform,stronger regional cooperation,and increasing engagement from international financial institutions and private investors.Modernizing grids,deploying storage systems,and investing in education,research,and innovation are critical for building human capacity in renewable energy sector.Accelerating the renewable energy transition is essential for Central Asia to meet climate goals,enhance environmental resilience,and ensure long-term socioeconomic development through innovation,investment,and regional collaboration.展开更多
Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diver...Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.展开更多
The hydrological system in Central Asia is highly sensitive to global climate change,significantly affecting water supply and energy production.In Tajikistan,the Vakhsh River—one of the main tributaries of the Amu Da...The hydrological system in Central Asia is highly sensitive to global climate change,significantly affecting water supply and energy production.In Tajikistan,the Vakhsh River—one of the main tributaries of the Amu Darya—plays a key role in the region’s hydropower and irrigation.However,research on long-term hydrological changes in its two top large basins—the Surkhob and Khingov river basins—remains limited.Therefore,this study analyzed long-term climate and hydrological changes in the Vakhsh River,including its main tributaries—the Surkhob and Khingov rivers—which are vital for the water resource management in Tajikistan and even in Central Asia.Using long-term hydrometeorological observations,the change trends of temperature(1933–2020),precipitation(1970–2020),and runoff(1940–2018)were examined to assess the impact of climate change on the regional water resources.The analysis revealed the occurrence of significant warming and a spatially uneven increase in precipitation.The temperature changes across three climatic periods(1933–1960,1960–1990,and 1990–2020)indicated that there was a transition from baseline level to accelerated warming.The precipitation showed a 2.99 mm/a increase in the Khingov River Basin and a 2.80 mm/a increase in the Surkhob River Basin during 1970–2020.Moreover,there was a gradual shift toward wetter conditions in recent decades.Despite the relatively stable annual mean runoff,seasonal redistribution occurred,with increased runoff in spring and reduced runoff in summer,due to the compensation of glacier melting.Moreover,this study forecasted runoff change during 2019–2040 using the exponential triple smoothing(ETS)method and revealed the occurrence of alternating wet and dry phases,emphasizing the sensitivity of the Vakhsh River Basin’s hydrological system to climate change and the necessity of adaptive water resource management in mountainous regions of Central Asia.Therefore,this study can provide evidence-based insights that are critical for future water resources planning,climate-resilient hydropower development,and regional adaptation strategies in climate-vulnerable basins in Central Asia.展开更多
Based on monthly runoff and climate datasets spanning 2000–2024,this study employed the Theil–Sen’s slope estimation,Mann–Kendall(M–K)trend test,as well as Pearson correlation and Spearman rank correlation analys...Based on monthly runoff and climate datasets spanning 2000–2024,this study employed the Theil–Sen’s slope estimation,Mann–Kendall(M–K)trend test,as well as Pearson correlation and Spearman rank correlation analyses to systematically examine the spatiotemporal patterns of runoff and its climatic driving mechanisms across Tajikistan,providing a scientific basis for sustainable water resource utilization and management in the study area.Results indicated that during 2000–2024,the annual runoff in Tajikistan exhibited statistically non-significant long-term trend(P=0.76),while displaying pronounced seasonal variability and strong spatial heterogeneity.Spring and summer average runoff primarily exhibited slight declining tendencies,while winter average runoff exhibited pronounced reduction in localized regions,such as the Syr Darya Basin,the Vakhsh River Basin,and the lower reaches of the Zeravshan River Basin.Precipitation emerged as the dominant positive driver of runoff,exhibiting moderate to strong positive correlations across over 78.00%of the country,whereas potential evapotranspiration consistently functioned as a negative driver.Rising temperatures exerted a dual competitive effect on runoff:in high-elevation,glacier-covered regions,rising temperatures temporarily increased runoff by accelerating glacier melt;however,at the national scale,the negative impact of rising temperature on runoff has played a slightly dominant role to a certain extent by enhancing evapotranspiration.Collectively,these results indicated that the present stability of runoff in Tajikistan is strongly dependent on the short-term compensatory effects of glacier melt and the risk of future runoff decline is likely to intensify as glacier reserves continue to diminish.This study provides a critical scientific evidence to inform sustainable water resource management in Tajikistan and underscores the need for glacier conservation and integrated water resource management strategies.展开更多
基金the National Key Basic Research Support Foundation of China (No. 2002CB111502), the NationalNatural Science Foundation of China (Nos. 40371074 and 40025106) and the China Postdoctoral Science Foundation(No. 2003033023).
文摘To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.
基金National Natural Science Foundation of China No.40176021 No.50339050
文摘Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discussed. The results show that evolutions of tidal flats throughout the Huanghe River Delta are influenced by various factors, and that progressive succession and regression of tidal flats concur in different coastal segments of the delta. Human activities have played an increasingly important role in the succession process of tidal flats. Due to land reclamation in coastal zones of the delta in the last 15 years, lots of tidal flats were occupied, the artificial coastline migrated seaward (the maximum change rate was 0.8 kmyr-1) and tidal creeks became sparser (the highest decreasing rate of length of tidal creeks was 14.9 kmyr-1). Except for two coastal segments from the Tiaohe Estuary to the 106 Station and from the south of the Huanghe River mouth to the north of the Xiaodao River Estuary, fractal dimension values of tidal creeks in the remaining coastal segments of the delta decreased. In addition, the time dimension, sediment fluxes into the sea, waves and tidal-currents have profound influences on the evolution process of tidal flats. Four types of tidal flats-river-dominated tidal flats, tide-dominated tidal flats, wave-dominated tidal flats and man-dominated tidal flats can be identified. Owing to the intensification of human activities in coastal zones of the delta, man-dominated tidal flats have become the main kind of tidal flats.
基金Under the auspices of National Key Research Program of China(No.2016YFC0502300,2016YFC0502102,2014BAB03B00)National Key Research and Development Program(No.2014BAB03B02)+3 种基金Agricultural Science and Technology Key Project of Guizhou Province of China(No.2014-3039)Science and Technology Plan Projects of Guiyang Municipal Bureau of Science and Technology of China(No.2012-205)Science and Technology Plan of Guizhou Province of China(No.2012-6015)Guangxi Natural Science Foundation of China(No.2014GXNSFBA118221)
文摘Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.
基金National Natural Science Foundation of China,No.41571077National Key Research and Development Program of China,No.2016YFC0503002
文摘Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in time, but also obtain the great significance of the future management. In this study, taking Changsha-Zhuzhou-Xiangtan(Chang-Zhu-Tan) urban agglomeration in Hunan province as a study area, Landsat images from 1995 to 2014 and Autologistic-CLUE-S model simulation data were used. Moreover, several factors including gravity center, direction, distance and landscape index were considered in the analysis of the expansion. The results revealed that the construction area increased by 132.18%, from 372.28 km^2 in 1995 to 864.37 km^2 in 2014. And it might even reach 1327.23 km^2 in 2023. Before 2014, three cities had their own respective and discrete development directions. However, because of the integration policy implementation in 2008, the Chang-Zhu-Tan began to gather, the gravity center moved southward after 2014, and the distance between cities decreased, which was in line with the development plan of urban expansion. The research methods and results were relatively reliable, and these results could provide some reference for the future land use planning and spatial allocation in the urbanization process of Chang-Zhu-Tan urban agglomeration.
基金Knowledge Innovation Project of CAS No.KZCX2-310-01+1 种基金 No.KZCX2-SW-415 No.KZCX1-Y-02
文摘The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the Landsat TM and ETM data of 1990 and 2000 respectively, we analyzed the spatial-temporal characteristics of land use/cover changes in the Dongting Lake area during the last decade. The result shows that during the last ten years there were three land-use types that had changed remarkably. The cultivated land decreased by 0.57% of the total cultivated land. The built-up land and water area expanded, with an increase of 8.97% and 0.43% respectively. The conversion between land use types mostly happened among these three land-use types, especially frequently between cultivated land and water area. The land-use change speed of land-use type is different. Three cities experienced the greatest degree of land-use change among all the administrative districts, which means that the land use in these cities changed much quickly. The following changed area was the west and south of the Dongting Lake area. The slowest changed area is the north and east area.
基金supported by the National Key Research and Development Project of China (No. 2019YFD0901405)the Open Project Program of the Scientific Observing and Experimental Station of Fishery Remote Sensing,Ministry of Agriculture (No. OFSOESFRS201501)+2 种基金the Central Public-Interest Scientific Institution Basal Research Fund (CAFS)(No. 2018HY-ZD0103)the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (No. SKLEC-KF201805)the Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment Funding (No. fjmfre2019003)。
文摘A ten-year chlorophyll-a concentration dataset from Moderate Resolution Imaging Spectro-radiometer(MODIS) were used to analyze the variation of phytoplankton biomass and its potential relation with climate in the East China Sea. The result indicated that the phytoplankton biomass generally had a regular pattern every year, and phytoplankton bloom mainly occurred between May and July. The highest phytoplankton biomass appeared near the Yangtze River Estuary. The lowest phytoplankton biomass located near the Taiwan Strait. In general, the starting bloom time was earlier in the south than in the north, and the span time of the former was also longer. During the recent ten years, the phytoplankton biomass around the Yangtze River Estuary decreased obviously. The change of phytoplankton biomass was found to be related with the Ni?o3.4 Index. The correlation between the intensity of phytoplankton bloom with the number and square of red tide were 0.63 and 0.74, respectively.
基金National Natural Science Foundation of China (No.30970506)111 project of MUC(B.08004)
文摘Yushu Tibetan Autonomous Prefecture, an area located in the Qinghai-Tibet Plateau, is an area very sensitive to global climate change. Due to impacts from climate change and human disturbances, grassland vegetation in the area has been degraded and desertification has been expanding. Ecosystems in the area are very sensitive and fragile and ecological problems have become increasingly serious in the area, resulting in an adverse effect on the local socio-economic development and environment of Qinghai province. Using data gathered from Landsat TM/ETM images for 1987, 1997 and 2007, we analyzed landscape patterns across Yushu Prefecture. Spatial structure indices indicated that: (i) the area of grassland has significantly decreased in the form of degradation and conversion from grassland into bare land and farmland; (ii) grassy vegetation patches changed into fragmented and isolated patches; (iii) the main landscapes in Yushu Prefecture are grasslands, forests and rivers; (iv) patches of grass have reiatively high connectivity; and (v) landscape change is significantly correlated with human activities and climate change. This study provides a strong theoretical and technical basis for policy-making regarding environmental protection of and management in Yushu Prefecture of Qinghai Province.
基金supported by the National Science and Technology Support Project(Grant No.2006BAB15B03)
文摘Regional land use changes are an important part of global changes.The research on land use changes in the Three Gorges Reservoir Area of China attracts a lot of attention owing to the Three Gorges Dam building.The Three Gorges Reservoir Area becomes one of the important research areas.This study analyzed the transforming processes and traits of each land use type and the regional differences of land use changes during the past 30 years,summarized the distribution of different land use types in different buffer zones and regresses the equation areas and different buffer distances based on buffer analyses and regression analyses,and then analyzed the transforming rules in different buffer distances,got the optimal influence distances.The research results indicate that,(1) cultivated land lies at the northwest of the reservoir and was decreasing,however,the construction land was increasing,especially the urban construction land,a large number of land was flooded because of the reservoir water level rise;(2) urban area was sprawling quickly in developed and neighboring areas,and a great deal of cultivated land and a considerable amount of grassland were occupied;in the earlier time,rural settlements occupied lots of cultivated land and a sum of forestry land in the later time;(3) the optimum influenced distances for cultivated land and forestry land were 10-35 km,and for urban and rural settlements were in 5-20 km.Overall,this research can reflect the spatial-temporal characteristics of land use changes during the 30 years,and it is helpful for urban planning and land use planning in the reservoir area.
基金The Sichuan Science and Technology Program (2020YFS0335, 2021YFH0121)The National College Students’ Innovative Entrepreneurial Training Plan Program of Sichuan Agricultural University (202110626038)The Double Support Program Project of Discipline Construction of Sichuan Agricultural University of China (2018, 2019, 2020)。
文摘Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.
文摘Existing literature is characterized by certain deficiencies in measuring housing bubbles in China. By extending the analytical framework of Black et al. (2006) to a spatial panel VAR structure, this paper measures housing bubbles in China's 35 major cities from 1999Q2 to 2012Q3 and analyzes the spatial-temporal changes of the housing bubbles in these cities. Results indicate that 1) changes to housing bubbles in most cities highly correspond with changes in the main real estate policies of the country and 2) housing bubbles in eastern developed cities such as Beijing, Shanghai, Shenzhen, Hangzhou, and Ningbo, have been relatively large in recent years although the average housing bubble is not very serious over the 35 major cities. Through the Kernel Density Function and local indicators of spatial autocorrelation analysis, this paper finds that housing bubbles are concentrated in several eastern developed cities. Based on empirical analysis, this paper proposes policy recommendations on inhibiting the expansion and diffusion of housing bubbles.
基金National Key Research and Development Plan Program(2016YFC0503701,2016YFB0501502)Key Project of High Resolution Earth Observation System(00-Y30B14-9001-14/16)
文摘The authors use a web crawler to retrieve all periodical articles from CNKI between the 1950 s and 2016 and then parse the abstracts of 293368 articles about grassland deterioration by word segmentation, location matching and other methods. The authors also construct a research hot regions extraction model of grassland deterioration in China based on a comprehensive research hot regions index of toponyms and then analyze the spatial pattern and dynamic change in research hot regions of grassland deterioration in China. The research shows the following:(1) The spatial heterogeneity of grassland deterioration in China can be effectively described by a model of grassland deterioration based on the comprehensive research hot regions index.(2) The research hot regions of grassland deterioration are mainly distributed in most regions of Inner Mongolia, Xinjiang, Qinghai, Tibet, Gansu and other provinces. The northeastern region of Inner Mongolia(such as Hulunbeier) and the eastern region of Inner Mongolia(such as Xilin Gol, Chifeng and Wulanchabu) are significant hot regions in the study of grassland deterioration.(3) The number of high research hot regions increases from 81 in the 1950 s to 99 in the 2000s; the area increases from 1.038 million km2 to 1.146 million km2. The degree of hot for grassland deterioration research in 197 counties showed an upward trend. This paper also discusses the relationship between the region of research hot regions and the region of grassland deterioration and then indicates the differences between them in time matching, space matching and concept matching.
基金supported by the National Key R&D Plan“Inter-governmental International Science&Technology Innovation Cooperation”Key Specialized Program,China(2025YFE0102800)the Program of the State Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Chinese Academy of Sciences(CSFSE-ZZ-2403).
文摘Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
基金Supported by the Scientific Research Projects of the Health System in Pingshan District,No.2023122.
文摘BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.
基金supported by the National Natural Science Foundation of China(W2412135)the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
文摘As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-government water resource management,and inefficient water use.Existing research has predominantly focused on individual hydrological processes,such as glacier retreat,snow cover change,or transboundary water issues,but it has yet to fully capture the overall complexity of water system.Tajikistan’s water system functions as an integrated whole from mountain runoff to downstream supply,but a comprehensive study of its water resource has yet to be conducted.To address this research gap,this study systematically examined the status,challenges,and sustainable management strategies of Tajikistan’s water resources based on a literature review,remote sensing data analysis,and case studies.Despite Tajikistan’s relative abundance of water resources,global warming is accelerating glacier melting and altering the hydrological cycles,which have resulted in unstable runoff patterns and heightened risks of extreme events.In Tajikistan,outdated infrastructure and poor management are primary causes of low water-use efficiency in the agricultural sector,which accounts for 85.00%of the total water withdrawals.At the governance level,Tajikistan faces challenges in balancing the water-energy-food nexus and transboundary water resource issues.To address these issues,this study proposes core paths for Tajikistan to achieve sustainable water resource management,such as accelerating technological innovation,promoting water-saving agricultural technologies,improving water resource utilization efficiency,and establishing a community participation-based comprehensive management framework.Additionally,strengthening cross-border cooperation and improving real-time monitoring systems have been identified as critical steps to advance sustainable water resource utilization and evidence-based decision-making in Tajikistan and across Central Asia.
基金The National University of Mongolia,No.P2024-4814The Mongolian Science and Technology Foundation,No.CHN-2022/274The‘Chey Institute for Advanced Studies’International Scholar Exchange Fellowship for the Academic Year of 2025-2026。
文摘This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.
文摘This study examined the role of green energy development in mitigating climate change and fostering sustainable development in Central Asia including Kazakhstan,Uzbekistan,Kyrgyzstan,Tajikistan,and Turkmenistan.The region has substantial untapped potential in solar energy,wind energy,hydropower energy,as well as biomass and bioenergy,positioning it strategically for renewable energy deployment.The result demonstrated that integrating renewable energy can reduce greenhouse gas emissions,improve air quality,enhance energy security,and support rural development.Case studies from Kazakhstan,Uzbekistan,Kyrgyzstan,and Tajikistan showed measurable environmental and economic benefits.However,the large-scale use of renewable energy still faces numerous barriers,including outdated infrastructure,fragmented regulatory frameworks,limited investment,and shortages of technical expertise.Overcoming these obstacles requires institutional reform,stronger regional cooperation,and increasing engagement from international financial institutions and private investors.Modernizing grids,deploying storage systems,and investing in education,research,and innovation are critical for building human capacity in renewable energy sector.Accelerating the renewable energy transition is essential for Central Asia to meet climate goals,enhance environmental resilience,and ensure long-term socioeconomic development through innovation,investment,and regional collaboration.
基金supported by the Laoshan Laboratory[grant number LSKJ202202403]the National Natural Science Foundation of China[grant number 42030410]+1 种基金additionally supported by the Startup Foundation for Introducing Talent of NUISTJiangsu Innovation Research Group[grant number JSSCTD202346]。
文摘Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.
基金supported by the National Natural Science Foundation of China(W2412135).
文摘The hydrological system in Central Asia is highly sensitive to global climate change,significantly affecting water supply and energy production.In Tajikistan,the Vakhsh River—one of the main tributaries of the Amu Darya—plays a key role in the region’s hydropower and irrigation.However,research on long-term hydrological changes in its two top large basins—the Surkhob and Khingov river basins—remains limited.Therefore,this study analyzed long-term climate and hydrological changes in the Vakhsh River,including its main tributaries—the Surkhob and Khingov rivers—which are vital for the water resource management in Tajikistan and even in Central Asia.Using long-term hydrometeorological observations,the change trends of temperature(1933–2020),precipitation(1970–2020),and runoff(1940–2018)were examined to assess the impact of climate change on the regional water resources.The analysis revealed the occurrence of significant warming and a spatially uneven increase in precipitation.The temperature changes across three climatic periods(1933–1960,1960–1990,and 1990–2020)indicated that there was a transition from baseline level to accelerated warming.The precipitation showed a 2.99 mm/a increase in the Khingov River Basin and a 2.80 mm/a increase in the Surkhob River Basin during 1970–2020.Moreover,there was a gradual shift toward wetter conditions in recent decades.Despite the relatively stable annual mean runoff,seasonal redistribution occurred,with increased runoff in spring and reduced runoff in summer,due to the compensation of glacier melting.Moreover,this study forecasted runoff change during 2019–2040 using the exponential triple smoothing(ETS)method and revealed the occurrence of alternating wet and dry phases,emphasizing the sensitivity of the Vakhsh River Basin’s hydrological system to climate change and the necessity of adaptive water resource management in mountainous regions of Central Asia.Therefore,this study can provide evidence-based insights that are critical for future water resources planning,climate-resilient hydropower development,and regional adaptation strategies in climate-vulnerable basins in Central Asia.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0720203)the National Key Research and Development Program of China(2023YFF0805603).
文摘Based on monthly runoff and climate datasets spanning 2000–2024,this study employed the Theil–Sen’s slope estimation,Mann–Kendall(M–K)trend test,as well as Pearson correlation and Spearman rank correlation analyses to systematically examine the spatiotemporal patterns of runoff and its climatic driving mechanisms across Tajikistan,providing a scientific basis for sustainable water resource utilization and management in the study area.Results indicated that during 2000–2024,the annual runoff in Tajikistan exhibited statistically non-significant long-term trend(P=0.76),while displaying pronounced seasonal variability and strong spatial heterogeneity.Spring and summer average runoff primarily exhibited slight declining tendencies,while winter average runoff exhibited pronounced reduction in localized regions,such as the Syr Darya Basin,the Vakhsh River Basin,and the lower reaches of the Zeravshan River Basin.Precipitation emerged as the dominant positive driver of runoff,exhibiting moderate to strong positive correlations across over 78.00%of the country,whereas potential evapotranspiration consistently functioned as a negative driver.Rising temperatures exerted a dual competitive effect on runoff:in high-elevation,glacier-covered regions,rising temperatures temporarily increased runoff by accelerating glacier melt;however,at the national scale,the negative impact of rising temperature on runoff has played a slightly dominant role to a certain extent by enhancing evapotranspiration.Collectively,these results indicated that the present stability of runoff in Tajikistan is strongly dependent on the short-term compensatory effects of glacier melt and the risk of future runoff decline is likely to intensify as glacier reserves continue to diminish.This study provides a critical scientific evidence to inform sustainable water resource management in Tajikistan and underscores the need for glacier conservation and integrated water resource management strategies.