Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi...Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance.展开更多
Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasi...Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%.展开更多
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba...To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.展开更多
The spatial composition of natural environment and settlement in the Three Gorges region along the Yangtze River was analyzed from a macro perspective,which emphasized its characteristics of the interdependence among ...The spatial composition of natural environment and settlement in the Three Gorges region along the Yangtze River was analyzed from a macro perspective,which emphasized its characteristics of the interdependence among its buildings,landform and waterscape,between buildings and landscape,and integration of nature and human culture.Then the spatial features of folk houses were analyzed,while special attention was paid to its "upward","grey",and dynamic characteristics.The courtyard-type residence and stilted building in South China were taken as examples in order to explain their exterior spatial characteristics,and the interior spatial features were analyzed from the pursuit of courtyard layout,the preference of courtyard space and the emphasis of central room space.The paper exposed the builders' rational thinking about natural environment and living place conveyed through the traditional folk houses,as well as the practical value of this architectural style in the special natural environment of the Three Gorges region,and explained the artistic achievements from the integration of architecture and environment,aiming to provide references for the urban and living environment construction in this region during the "Post Three-Gorges Project Era".展开更多
41 a (1961 - 2001) seasonal Z index series of 25 representative weather stations are investigated by virtue of EOF, FFT, continuous wavelet transformation (CWT) and orthogonai wavelet transformation (OWT). It sh...41 a (1961 - 2001) seasonal Z index series of 25 representative weather stations are investigated by virtue of EOF, FFT, continuous wavelet transformation (CWT) and orthogonai wavelet transformation (OWT). It shows that: (1) Fujian drought/flood (DF) has a significant 2 - 3a cycle for the periods 1965 - 1975 and 1990's; (2) the pattern, which represents the opposite DF trend between the southern and northem parts, has la and 3 - 4a cycles since the middle of 1980's; (3) EOF3, which denotes the reverse change between the middle-west region and other areas, has significant 1 - 2a cycle for the period from 1985 to 1998 and 9 - 13a cycle since 1980s; (4) there is an obvious drought trend for the last 40a (especially in the 1990's), which is more outstanding in the south (east) than in the north (west); (5) the 1960's and 1980's are in relatively wet phases and the 1970's and 1990's are in drought spells.展开更多
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa...The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.展开更多
As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as r...As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as research object,using the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM)(remote sensing measurement of elevation data) and GIS platform,this paper made a quantitative study on traditional settlement space in mountain environment of this region,and studied space parameters including elevation,terrain,aspect,and boundary,observed and summarized the spatial features.In addition,based on the local chronicles of Ming and Qing dynasties,it mutually verified the quantitative conclusions and qualitative cognition,analyzed the evolution rules of traditional settlements in Fukou Xing region,and finally obtained new understandings of spatial features of traditional settlements in Fukou Xing region.展开更多
As a special outcome of urbanization,mega-towns not only play an important role in the process of socio-economic development,but also are important contributors to urbanization.Based on a spatial database of mega-town...As a special outcome of urbanization,mega-towns not only play an important role in the process of socio-economic development,but also are important contributors to urbanization.Based on a spatial database of mega-towns in China,this paper explores the spatial distribution features and growth mechanisms of China’s 238 mega-towns using the nearest neighbour distance method,kernel density estimation,regression analysis,global autocorrelation,local autocorrelation and other spatial analysis methods.Results of spatial distribution features show that:(1)on the national scale,the existing 238 mega-towns mainly gathered in the southeast coastal areas of China;they formed two spatial core agglomerations,several secondary ones and a southeast coastal agglomeration belt;(2)on the regional scale,each economic region’s index was less than 1,indicating that mega-towns in each region tended to be spatially agglomerated due to the close relationship with regional development level and their number;(3)on the provincial scale,68%of provincial-level units in China tended to be a spatial agglomeration of mega-towns;only one province had a random distribution;the number of mega-towns in those evenly-distributed provinces was generally small.The growth of mega-towns was determined by a combination of various natural and humanistic factors,including topography,location,economy,population,traffic,and national policy.This paper chose digital elevation model(DEM),location advantage,economic density,population density,and highway density distribution as corresponding indicators as quantitative factors.By combining their local autocorrelation analysis,these factors all showed certain influence on the spatial growth of mega-towns and together scheduled it.In the future,provinces and cities should make full use of the mega-town functions to promote their socioeconomic development,especially the central and western regions in China.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestri...In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.展开更多
Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively r...Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively realize these advantages,a fine-grained collection and analysis of smart meter data is essential.However,the high dimensionality and volume of such time-series present significant challenges,including increased computational load,data transmission overhead,latency,and complexity in real-time analysis.This study proposes a novel,computationally efficient framework for feature extraction and selection tailored to smart meter time-series data.The approach begins with an extensive offline analysis,where features are derived from multiple domains—time,frequency,and statistical—to capture diverse signal characteristics.Various feature sets are fused and evaluated using robust machine learning classifiers to identify the most informative combinations for automated appliance categorization.The bestperforming fused features set undergoes further refinement using Analysis of Variance(ANOVA)to identify the most discriminative features.The mathematical models,used to compute the selected features,are optimized to extract them with computational efficiency during online processing.Moreover,a notable dimension reduction is secured which facilitates data storage,transmission,and post processing.Onward,a specifically designed LogitBoost(LB)based ensemble of Random Forest base learners is used for an automated classification.The proposed solution demonstrates a high classification accuracy(97.93%)for the case of nine-class problem and dimension reduction(17.33-fold)with minimal front-end computational requirements,making it well-suited for real-world applications in smart grid environments.展开更多
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ...The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.展开更多
Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practi...Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practical significance to study the temporal and spatial distribution characteristics of extreme weather events and the circulation background field. We selected daily high temperature data (≥35°C), daily minimum temperature data and daily precipitation data (≥50 mm) from 109 meteorological stations in Shanxi Province, China from 1981 to 2010, then set the period in which the temperature is ≥35°C for more than 3 days as a high temperature extreme weather event, define the station in which 24 hour cumulative precipitation is ≥50 mm precipitation on a certain day (20 - 20 hours, Beijing time) as a rainstorm weather, and determine the cold air activity with daily minimum temperature dropped by more than 8°C for 24 hours, or decreased by 10°C for 48 h, and a daily minimum temperature of ≤4°C as a cold weather process. We statistically analyze the temporal and spatial characteristics and trends of high temperature, heavy rain and cold weather and the circulation background field. We count the number of extreme weather events such as persistent high temperatures, heavy rains and cold weather frosts in Shanxi, and analyze the temporal and spatial distribution characteristics, trends and general circulation background of extreme weather events. We analyze and find out the common features of the large-scale circulation background field in various extreme weather events. Through the study of the temporal and spatial distribution characteristics of extreme weather events in Shanxi, including persistent high temperature, heavy rain or sudden cold wave frost weather, we summarize the large-scale circulation characteristics of such extreme weather events. It will provide some reference for future related weather forecasting.展开更多
AIM:To evaluate the peripheral arterial filling time(PAFT)and venous filling time(VFT)in eyes without known diseases that may influence filling process using ultra-widefield(UWF)fluorescein angiography(FA),and to revi...AIM:To evaluate the peripheral arterial filling time(PAFT)and venous filling time(VFT)in eyes without known diseases that may influence filling process using ultra-widefield(UWF)fluorescein angiography(FA),and to review the peripheral retina fluorescence features.METHODS:A total of 30 eyes of 30 patients were retrospectively reviewed in this observational study.UWFFA was performed using Optos 200Tx.PAFT and VFT was recorded.The interval between the arterial or venous filling completion and the previous photo was documented.The appearance of the far peripheral retina was described as either granular background fluorescence or mottled fluorescent band or vascular leakage.Terminal vascular patterns was described as loop pattern or branching pattern.Microvascular abnormalities such as arteriovenous shunting,vessels crossing the horizontal raphe,right angle vessels,terminal networks,capillary nonperfusion,drusen or microaneurysms were evaluated.RESULTS:The normal limits of PAFT was 3.397-8.984s and 4.399-11.753s for VFT.The appearance of the far peripheral retina,defined as granular background(63%),mottled fluorescence(20%),or vascular leakage(17%),was symmetrical between both eyes.Capillary nonperfusion(23%)and microaneurysms(40%)were more frequently found in eyes with loop pattern than in eyes with branching pattern.Other peripheral signs such as right-angle vessels(73%),and terminal networks(80%)were commonly seen on UWF-FA in the normal peripheral retina.CONCLUSION:The main courses of retinal artery and vein filling time are overlapping with each other on UWF-FA.Notably,the arterial filling process is completed in the arteriovenous phase rather than the traditionally named arterial phase.There are various manifestations in the peripheral retina of normal eyes.展开更多
Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspa...Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security.展开更多
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce...The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segm...Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segmented time series to derive the symbols. So, many important features of time series are not considered, such as extreme value, trend, fluctuation and so on. To solve this issue, we propose in this paper an improved Symbolic Aggregate approXimation based on multiple features and Vector Frequency Difference (SAX_VFD). SAX_VFD discriminates between time series by adopting an adaptive feature selection method. Furthermore, SAX_VFD is endowed with a new distance that takes into account the vector frequency difference between the symbolic sequence. We demonstrate the utility of the SAX_VFD on the time series classification task. The experimental results show that the proposed method has a better performance in terms of accuracy and dimensionality reduction compared to the so far published SAX based reduction techniques.展开更多
On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entro...On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entropy spectrum are made to indentify the major spatial and temporal features of the sea ice fluctuations within 32-year period. And then, a brief appropriate physical explanation is tentatively suggested. The results show that both seasonal and non-seasonal variations of the sea ice extent are remarkable, and iis mean annual peripheral positions as well as their interannu-al shifting amplitudes are quite different among all subregions. These features are primarily affected by solar radiation, o-cean circulation, sea surface temperature and maritime-continental contrast, while the non-seasonal variations are most possibly affected by the cosmic-geophysical factors such as earth pole shife, earth rotation oscillation and solar activity.展开更多
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re...Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.展开更多
基金supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang (No.GK249909299001-036)National Key Research and Development Program of China (No. 2023YFB4502803)Zhejiang Provincial Natural Science Foundation of China (No.LDT23F01014F01)。
文摘Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance.
基金supported by the National Key R&D Program of China(No.2022ZD0118402)。
文摘Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%.
基金supported by the National Natural Science Foundation of China(No.61275010)the Ph.D.Programs Foundation of Ministry of Education of China(No.20132304110007)+1 种基金the Heilongjiang Natural Science Foundation(No.F201409)the Fundamental Research Funds for the Central Universities(No.HEUCFD1410)
文摘To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.
基金Supported by Humanities Fund of Ministry of Education (09YJAZH047)Scientific Research and Development Program of Yichang City (A09302-27)~~
文摘The spatial composition of natural environment and settlement in the Three Gorges region along the Yangtze River was analyzed from a macro perspective,which emphasized its characteristics of the interdependence among its buildings,landform and waterscape,between buildings and landscape,and integration of nature and human culture.Then the spatial features of folk houses were analyzed,while special attention was paid to its "upward","grey",and dynamic characteristics.The courtyard-type residence and stilted building in South China were taken as examples in order to explain their exterior spatial characteristics,and the interior spatial features were analyzed from the pursuit of courtyard layout,the preference of courtyard space and the emphasis of central room space.The paper exposed the builders' rational thinking about natural environment and living place conveyed through the traditional folk houses,as well as the practical value of this architectural style in the special natural environment of the Three Gorges region,and explained the artistic achievements from the integration of architecture and environment,aiming to provide references for the urban and living environment construction in this region during the "Post Three-Gorges Project Era".
基金Project from the Ministry of Science and Technology of China (2001DIB20116)open projectfor KLME of Nanjing Institute of Meteorology (KJS02108)
文摘41 a (1961 - 2001) seasonal Z index series of 25 representative weather stations are investigated by virtue of EOF, FFT, continuous wavelet transformation (CWT) and orthogonai wavelet transformation (OWT). It shows that: (1) Fujian drought/flood (DF) has a significant 2 - 3a cycle for the periods 1965 - 1975 and 1990's; (2) the pattern, which represents the opposite DF trend between the southern and northem parts, has la and 3 - 4a cycles since the middle of 1980's; (3) EOF3, which denotes the reverse change between the middle-west region and other areas, has significant 1 - 2a cycle for the period from 1985 to 1998 and 9 - 13a cycle since 1980s; (4) there is an obvious drought trend for the last 40a (especially in the 1990's), which is more outstanding in the south (east) than in the north (west); (5) the 1960's and 1980's are in relatively wet phases and the 1970's and 1990's are in drought spells.
文摘The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.
基金Sponsored by Project of National Natural Science Foundation(51608007)"Young Top-notch Talent Support Plan" of North China University of Technology
文摘As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as research object,using the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM)(remote sensing measurement of elevation data) and GIS platform,this paper made a quantitative study on traditional settlement space in mountain environment of this region,and studied space parameters including elevation,terrain,aspect,and boundary,observed and summarized the spatial features.In addition,based on the local chronicles of Ming and Qing dynasties,it mutually verified the quantitative conclusions and qualitative cognition,analyzed the evolution rules of traditional settlements in Fukou Xing region,and finally obtained new understandings of spatial features of traditional settlements in Fukou Xing region.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA 19040402National Natural Science Foundation of China,No.41771180,No.41661144023,No.41701165。
文摘As a special outcome of urbanization,mega-towns not only play an important role in the process of socio-economic development,but also are important contributors to urbanization.Based on a spatial database of mega-towns in China,this paper explores the spatial distribution features and growth mechanisms of China’s 238 mega-towns using the nearest neighbour distance method,kernel density estimation,regression analysis,global autocorrelation,local autocorrelation and other spatial analysis methods.Results of spatial distribution features show that:(1)on the national scale,the existing 238 mega-towns mainly gathered in the southeast coastal areas of China;they formed two spatial core agglomerations,several secondary ones and a southeast coastal agglomeration belt;(2)on the regional scale,each economic region’s index was less than 1,indicating that mega-towns in each region tended to be spatially agglomerated due to the close relationship with regional development level and their number;(3)on the provincial scale,68%of provincial-level units in China tended to be a spatial agglomeration of mega-towns;only one province had a random distribution;the number of mega-towns in those evenly-distributed provinces was generally small.The growth of mega-towns was determined by a combination of various natural and humanistic factors,including topography,location,economy,population,traffic,and national policy.This paper chose digital elevation model(DEM),location advantage,economic density,population density,and highway density distribution as corresponding indicators as quantitative factors.By combining their local autocorrelation analysis,these factors all showed certain influence on the spatial growth of mega-towns and together scheduled it.In the future,provinces and cities should make full use of the mega-town functions to promote their socioeconomic development,especially the central and western regions in China.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金the Foshan Science and technology Innovation Team Project(No.FS0AA-KJ919-4402-0060)the National Natural Science Foundation of China(No.62263018)。
文摘In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.
文摘Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively realize these advantages,a fine-grained collection and analysis of smart meter data is essential.However,the high dimensionality and volume of such time-series present significant challenges,including increased computational load,data transmission overhead,latency,and complexity in real-time analysis.This study proposes a novel,computationally efficient framework for feature extraction and selection tailored to smart meter time-series data.The approach begins with an extensive offline analysis,where features are derived from multiple domains—time,frequency,and statistical—to capture diverse signal characteristics.Various feature sets are fused and evaluated using robust machine learning classifiers to identify the most informative combinations for automated appliance categorization.The bestperforming fused features set undergoes further refinement using Analysis of Variance(ANOVA)to identify the most discriminative features.The mathematical models,used to compute the selected features,are optimized to extract them with computational efficiency during online processing.Moreover,a notable dimension reduction is secured which facilitates data storage,transmission,and post processing.Onward,a specifically designed LogitBoost(LB)based ensemble of Random Forest base learners is used for an automated classification.The proposed solution demonstrates a high classification accuracy(97.93%)for the case of nine-class problem and dimension reduction(17.33-fold)with minimal front-end computational requirements,making it well-suited for real-world applications in smart grid environments.
基金supported by the Joint Civil Aviation Fund of National Natural Science Foundation of China(Nos.U1533108 and U1233112)
文摘The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
文摘Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practical significance to study the temporal and spatial distribution characteristics of extreme weather events and the circulation background field. We selected daily high temperature data (≥35°C), daily minimum temperature data and daily precipitation data (≥50 mm) from 109 meteorological stations in Shanxi Province, China from 1981 to 2010, then set the period in which the temperature is ≥35°C for more than 3 days as a high temperature extreme weather event, define the station in which 24 hour cumulative precipitation is ≥50 mm precipitation on a certain day (20 - 20 hours, Beijing time) as a rainstorm weather, and determine the cold air activity with daily minimum temperature dropped by more than 8°C for 24 hours, or decreased by 10°C for 48 h, and a daily minimum temperature of ≤4°C as a cold weather process. We statistically analyze the temporal and spatial characteristics and trends of high temperature, heavy rain and cold weather and the circulation background field. We count the number of extreme weather events such as persistent high temperatures, heavy rains and cold weather frosts in Shanxi, and analyze the temporal and spatial distribution characteristics, trends and general circulation background of extreme weather events. We analyze and find out the common features of the large-scale circulation background field in various extreme weather events. Through the study of the temporal and spatial distribution characteristics of extreme weather events in Shanxi, including persistent high temperature, heavy rain or sudden cold wave frost weather, we summarize the large-scale circulation characteristics of such extreme weather events. It will provide some reference for future related weather forecasting.
基金Supported by Capital Health Development Research Special Fund(No.2020-2-2053)。
文摘AIM:To evaluate the peripheral arterial filling time(PAFT)and venous filling time(VFT)in eyes without known diseases that may influence filling process using ultra-widefield(UWF)fluorescein angiography(FA),and to review the peripheral retina fluorescence features.METHODS:A total of 30 eyes of 30 patients were retrospectively reviewed in this observational study.UWFFA was performed using Optos 200Tx.PAFT and VFT was recorded.The interval between the arterial or venous filling completion and the previous photo was documented.The appearance of the far peripheral retina was described as either granular background fluorescence or mottled fluorescent band or vascular leakage.Terminal vascular patterns was described as loop pattern or branching pattern.Microvascular abnormalities such as arteriovenous shunting,vessels crossing the horizontal raphe,right angle vessels,terminal networks,capillary nonperfusion,drusen or microaneurysms were evaluated.RESULTS:The normal limits of PAFT was 3.397-8.984s and 4.399-11.753s for VFT.The appearance of the far peripheral retina,defined as granular background(63%),mottled fluorescence(20%),or vascular leakage(17%),was symmetrical between both eyes.Capillary nonperfusion(23%)and microaneurysms(40%)were more frequently found in eyes with loop pattern than in eyes with branching pattern.Other peripheral signs such as right-angle vessels(73%),and terminal networks(80%)were commonly seen on UWF-FA in the normal peripheral retina.CONCLUSION:The main courses of retinal artery and vein filling time are overlapping with each other on UWF-FA.Notably,the arterial filling process is completed in the arteriovenous phase rather than the traditionally named arterial phase.There are various manifestations in the peripheral retina of normal eyes.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 2020JKF101the Research Funds of Sugon under Grant 2022KY001.
文摘Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security.
文摘The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
文摘Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segmented time series to derive the symbols. So, many important features of time series are not considered, such as extreme value, trend, fluctuation and so on. To solve this issue, we propose in this paper an improved Symbolic Aggregate approXimation based on multiple features and Vector Frequency Difference (SAX_VFD). SAX_VFD discriminates between time series by adopting an adaptive feature selection method. Furthermore, SAX_VFD is endowed with a new distance that takes into account the vector frequency difference between the symbolic sequence. We demonstrate the utility of the SAX_VFD on the time series classification task. The experimental results show that the proposed method has a better performance in terms of accuracy and dimensionality reduction compared to the so far published SAX based reduction techniques.
文摘On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entropy spectrum are made to indentify the major spatial and temporal features of the sea ice fluctuations within 32-year period. And then, a brief appropriate physical explanation is tentatively suggested. The results show that both seasonal and non-seasonal variations of the sea ice extent are remarkable, and iis mean annual peripheral positions as well as their interannu-al shifting amplitudes are quite different among all subregions. These features are primarily affected by solar radiation, o-cean circulation, sea surface temperature and maritime-continental contrast, while the non-seasonal variations are most possibly affected by the cosmic-geophysical factors such as earth pole shife, earth rotation oscillation and solar activity.
基金National Key Research and Development Program of China,No.2023YFC3206605,No.2021YFC3201102National Natural Science Foundation of China,No.41971035。
文摘Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.