This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailin...Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.展开更多
In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience...In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.展开更多
Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relativel...Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relatively small spatial extents,the potential drivers ofβ-diversity along latitudinal gradients are still not well understood at larger spatial extents.In this study,we determined whether treeβ-diversity is correlated with latitude in forests of southeastern China,and if so,what ecological processes contribute to these patterns of treeβ-diversity.We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents.We delineated regional communities comprising multiple nearby national forest inventory(NFI)plots around random focal plots.The number of NFI plots in a regional community served as a surrogate for spatial extent.We also used a null model to simulate randomly assembled communities and quantify the deviation(β-deviation)between observed and expectedβ-diversity.We found thatβ-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents.In addition,latitudinal patterns ofβ-deviation were explained by the degree of species spatial aggregation.We also identified environmental factors that driveβ-deviation in these forests,including precipitation,seasonality,and temperature variation.At larger spatial extents,these environmental variables explained up to 84%of theβ-deviation.Our results reinforce that ecological processes are scale-dependent and collectively contribute to theβ-gradient in subtropical forests.We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.展开更多
Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ...Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ecological resilience(ER)and economic level(EL)of development,which poses a notable social threat.Currently,the link between ER and EL in China remains unclear,especially in terms of spatial dislocation(SD),referring to the disconnect between the locations where environmental impacts occur and those where economic benefits or activities are concentrated.Therefore,this paper aims to provide theoretical support and an empirical basis for policy-based solutions to address this gap.Based on the SD theory,this study systematically discusses the temporal changes,spatial patterns,and SD characteristics of China’s ER and EL using spatial auto-correlation and barycentric analysis to analyze data from 30 provinces covering the period 2011-2021.The key results are as follows.China’s ER shows a general trend of growth;however,its distribution is uneven.The spatial pattern generally decreases from the southeastern coastal provinces to the northwest.Moreover,a gradually increasing positive correlation is observed between the ER and EL,but this correlation varies by region,with some showing regional linkages and others developing independently.Finally,the dislocation index of ER and EL presents divergent results based on region-the eastern and central regions primarily show a high level of dislocation,whereas the western and northeastern regions show a low level of dislocation.The results provide a comprehensive overview of the spatiotemporal patterns in the association between ER and EL in China.The results emphasize that to balance sustainable regional development and ecological governance,a region-specific approach must be employed,prioritizing innovation-driven strategies for high ER in more developed regions and market-oriented strategies in less developed regions.展开更多
Spatial transcriptomics technology provides novel insights into the spatial organization of gene expression during embryonic development.In this study,we propose a method that integrates analysis across both temporal ...Spatial transcriptomics technology provides novel insights into the spatial organization of gene expression during embryonic development.In this study,we propose a method that integrates analysis across both temporal and spatial dimensions to investigate spatial transcriptomics data from mouse embryos at different developmental stages.We quantified the spatial expression pattern of each gene at various stages by calculating its Moran’s I.Furthermore,by employing time-series clustering to identify dynamic co-expression modules,we identified several developmentally stage-specific regulatory gene modules.A key finding was the presence of distinct,stage-specific gene network modules across different developmental periods:Early modules focused on morphogenesis,mid-stage on organ development,and late-stage on neural and tissue maturation.Functional enrichment analysis further confirmed the core biological functions of each module.The dynamic,spatially-resolved gene expression model constructed in this study not only provides new biological insights into the programmed spatiotemporal reorganization of gene regulatory networks during embryonic development but also presents an effective approach for analyzing complex spatiotemporal omics data.This work provides a new perspective for understanding developmental biology,regenerative medicine,and related fields.展开更多
The traditional Feng Shui pattern embodies rich ecological wisdom and philosophical thoughts,which are of great significance to the modern sustainable space design.The core concepts of Feng Shui patterns from traditio...The traditional Feng Shui pattern embodies rich ecological wisdom and philosophical thoughts,which are of great significance to the modern sustainable space design.The core concepts of Feng Shui patterns from traditional civilization can provide a theoretical foundation and research framework for this study.By integrating these principles,such as“hiding the wind and gathering the Qi”and“backing the mountain and facing the water”,a functional relationship between urban structures can be established.This approach can help optimize the spatial layout of urban elements,minimize energy consumption,and enhance environmental comfort.It also examines the influence of the ShanShui City pattern in traditional Feng Shui on guiding the development of modern urban ecological networks,as well as its role in protecting and restoring biodiversity through ecological corridors and ecological nodes.The modern urban design of traditional Feng Shui culture focuses on the inheritance and innovation of riotous things and the combination of traditional Feng Shui concepts and modern design concepts to form ecological spaces with cultural connotation.This paper hopes to give some inspiration or methods for contemporary urban design and to reconcile the relationship between human and nature through these thoughts.展开更多
Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterp...Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterprises are entering a stage of stagnation in production.In this study,a dense seismic array of 125 short-period stations was deployed around the core mining area and its vicinity of the salt mine industry,we used the ambient noise tomography(ANT)method to image the three-dimensional shear wave velocity structure at the depth shallower than 3 km.The results indicate:(1)The overall shear wave velocity in the study area is relatively lower,ranging from 0.8 to 1.8 km/s,which could be related to the loose and thick deposition of the Zhaoji sub-depression.(2)The three-dimensional shear wave velocity structure reveals that the sedimentary thickness of the Zhaoji sub-depression is deeper in the southeast and shallower in the northwest,with the sedimentary center located around Heping Town and Dahuangzhuang Town.(3)The Zhaoji salt mine is a low-velocity anomalous zone in the shear wave velocity structure with an inverse‘C'character spreading along Nanchenji Town and Zhaoji Town,with a depth ranging from approximately 1.2 to 2.8 km,it may be caused by the development of rock fissures due to water extraction and injection.The surrounding rock exhibits relatively high velocity,which reflects the morphological characteristics of the Zhaoji Salt Basin.The three-dimensional shear wave velocity model obtained in this study provides scientific guidance for the industrial exploitation of the Zhaoji salt mine and reference for salt exploration of the Hongze Salt Basin.It also provides an important basis for the seismic risk assessment of the salt basins.Simultaneously,it holds significant implications for exploring the application of ambient noise tomography method in spatial detection of salt mine belt.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have high...The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.展开更多
Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects...Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects and fish,research on large animals is still rare due to the limited availability of field collective data.We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orienta-tion of Kiang(Tibetan wild ass,Equus kiang).Leadership is unevenly distributed among Kiang,with the minority initiating majority behavior-shift decisions.Decisions of individual to join are driven by imitation between group members,and are largely dependent on the number of members who have already joined.Kiang respond to the behavior and position of neighbors through different strategies.They strongly polarize when moving,therefore adopting a linear alignment.When vigilant,orientation deviation increases as they form a tighter group.They remain scattered while feeding and,in that context,adopt a side-by-side alignment.This study reveals partially-shared decision-making among Kiang,whereby copying neighbors provides the wisdom to thrive in harsh conditions.This study also suggests that animals'spatial patterns in orientation depend largely ontheirbehavioral states inachieving synchronization.展开更多
Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor consi...Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.展开更多
In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Hal...In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.展开更多
Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensi...Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.展开更多
There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteri...There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain ...The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.展开更多
Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally va...Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.
基金Under the auspices of National Natural Science Foundation of China(No.42471205)the General Scientific Research Project of Zhejiang Provincial Department of Education(No.2024JYTYB12)the Philosophy and Social Science Planning Project of Zhejiang Province(No.23NDJC109YB)。
文摘In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.
基金supported by the National Natural Science Foundation of China(42271317)the Innovation Research Team Project of the Natural Science Foundation of Hainan Province(422CXTD515)。
文摘Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relatively small spatial extents,the potential drivers ofβ-diversity along latitudinal gradients are still not well understood at larger spatial extents.In this study,we determined whether treeβ-diversity is correlated with latitude in forests of southeastern China,and if so,what ecological processes contribute to these patterns of treeβ-diversity.We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents.We delineated regional communities comprising multiple nearby national forest inventory(NFI)plots around random focal plots.The number of NFI plots in a regional community served as a surrogate for spatial extent.We also used a null model to simulate randomly assembled communities and quantify the deviation(β-deviation)between observed and expectedβ-diversity.We found thatβ-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents.In addition,latitudinal patterns ofβ-deviation were explained by the degree of species spatial aggregation.We also identified environmental factors that driveβ-deviation in these forests,including precipitation,seasonality,and temperature variation.At larger spatial extents,these environmental variables explained up to 84%of theβ-deviation.Our results reinforce that ecological processes are scale-dependent and collectively contribute to theβ-gradient in subtropical forests.We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.
基金funded by the National Natural Science Foundation of China[Grant No.71963030]a subproject of China’s third comprehensive scientific expedition to Xinjiang[Grant No.SQ2021xjkk01800]+1 种基金a major science and technology project in the Xinjiang Uygur Autonomous Region[Grant No.2022A01003]a scientific research innovation project for excellent doctoral students of Xinjiang University[Grant No.XJU2022BS010].
文摘Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ecological resilience(ER)and economic level(EL)of development,which poses a notable social threat.Currently,the link between ER and EL in China remains unclear,especially in terms of spatial dislocation(SD),referring to the disconnect between the locations where environmental impacts occur and those where economic benefits or activities are concentrated.Therefore,this paper aims to provide theoretical support and an empirical basis for policy-based solutions to address this gap.Based on the SD theory,this study systematically discusses the temporal changes,spatial patterns,and SD characteristics of China’s ER and EL using spatial auto-correlation and barycentric analysis to analyze data from 30 provinces covering the period 2011-2021.The key results are as follows.China’s ER shows a general trend of growth;however,its distribution is uneven.The spatial pattern generally decreases from the southeastern coastal provinces to the northwest.Moreover,a gradually increasing positive correlation is observed between the ER and EL,but this correlation varies by region,with some showing regional linkages and others developing independently.Finally,the dislocation index of ER and EL presents divergent results based on region-the eastern and central regions primarily show a high level of dislocation,whereas the western and northeastern regions show a low level of dislocation.The results provide a comprehensive overview of the spatiotemporal patterns in the association between ER and EL in China.The results emphasize that to balance sustainable regional development and ecological governance,a region-specific approach must be employed,prioritizing innovation-driven strategies for high ER in more developed regions and market-oriented strategies in less developed regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12090052,U24A2014,and 12325405).
文摘Spatial transcriptomics technology provides novel insights into the spatial organization of gene expression during embryonic development.In this study,we propose a method that integrates analysis across both temporal and spatial dimensions to investigate spatial transcriptomics data from mouse embryos at different developmental stages.We quantified the spatial expression pattern of each gene at various stages by calculating its Moran’s I.Furthermore,by employing time-series clustering to identify dynamic co-expression modules,we identified several developmentally stage-specific regulatory gene modules.A key finding was the presence of distinct,stage-specific gene network modules across different developmental periods:Early modules focused on morphogenesis,mid-stage on organ development,and late-stage on neural and tissue maturation.Functional enrichment analysis further confirmed the core biological functions of each module.The dynamic,spatially-resolved gene expression model constructed in this study not only provides new biological insights into the programmed spatiotemporal reorganization of gene regulatory networks during embryonic development but also presents an effective approach for analyzing complex spatiotemporal omics data.This work provides a new perspective for understanding developmental biology,regenerative medicine,and related fields.
文摘The traditional Feng Shui pattern embodies rich ecological wisdom and philosophical thoughts,which are of great significance to the modern sustainable space design.The core concepts of Feng Shui patterns from traditional civilization can provide a theoretical foundation and research framework for this study.By integrating these principles,such as“hiding the wind and gathering the Qi”and“backing the mountain and facing the water”,a functional relationship between urban structures can be established.This approach can help optimize the spatial layout of urban elements,minimize energy consumption,and enhance environmental comfort.It also examines the influence of the ShanShui City pattern in traditional Feng Shui on guiding the development of modern urban ecological networks,as well as its role in protecting and restoring biodiversity through ecological corridors and ecological nodes.The modern urban design of traditional Feng Shui culture focuses on the inheritance and innovation of riotous things and the combination of traditional Feng Shui concepts and modern design concepts to form ecological spaces with cultural connotation.This paper hopes to give some inspiration or methods for contemporary urban design and to reconcile the relationship between human and nature through these thoughts.
基金supported by the National Key R&D Program of China(No.2024YFC3012902)the National Natural Science Foundation of China(No.42074070)supported by the Huai’an Earthquake Prevention and Disaster Reduction Service Center“Salt Cavern Exploration Project”(No.HAZC-2021050155-001)。
文摘Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterprises are entering a stage of stagnation in production.In this study,a dense seismic array of 125 short-period stations was deployed around the core mining area and its vicinity of the salt mine industry,we used the ambient noise tomography(ANT)method to image the three-dimensional shear wave velocity structure at the depth shallower than 3 km.The results indicate:(1)The overall shear wave velocity in the study area is relatively lower,ranging from 0.8 to 1.8 km/s,which could be related to the loose and thick deposition of the Zhaoji sub-depression.(2)The three-dimensional shear wave velocity structure reveals that the sedimentary thickness of the Zhaoji sub-depression is deeper in the southeast and shallower in the northwest,with the sedimentary center located around Heping Town and Dahuangzhuang Town.(3)The Zhaoji salt mine is a low-velocity anomalous zone in the shear wave velocity structure with an inverse‘C'character spreading along Nanchenji Town and Zhaoji Town,with a depth ranging from approximately 1.2 to 2.8 km,it may be caused by the development of rock fissures due to water extraction and injection.The surrounding rock exhibits relatively high velocity,which reflects the morphological characteristics of the Zhaoji Salt Basin.The three-dimensional shear wave velocity model obtained in this study provides scientific guidance for the industrial exploitation of the Zhaoji salt mine and reference for salt exploration of the Hongze Salt Basin.It also provides an important basis for the seismic risk assessment of the salt basins.Simultaneously,it holds significant implications for exploring the application of ambient noise tomography method in spatial detection of salt mine belt.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.
基金funded in part by Research on Intelligent Control System of Variable Fertilization of Deep Application Liquid Fertilizer(GXKS2022GKY003)Research on Vehicle Ranging System Based on Object Detection and Monocular Vision(2022KY0854).
文摘The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.
基金supported by Tibet Major Science and Technology Project(XZ201901-GA-06)National Natural Science Foundation of China(32101237&41871294)National key research and development program(2022YFC3202104).
文摘Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects and fish,research on large animals is still rare due to the limited availability of field collective data.We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orienta-tion of Kiang(Tibetan wild ass,Equus kiang).Leadership is unevenly distributed among Kiang,with the minority initiating majority behavior-shift decisions.Decisions of individual to join are driven by imitation between group members,and are largely dependent on the number of members who have already joined.Kiang respond to the behavior and position of neighbors through different strategies.They strongly polarize when moving,therefore adopting a linear alignment.When vigilant,orientation deviation increases as they form a tighter group.They remain scattered while feeding and,in that context,adopt a side-by-side alignment.This study reveals partially-shared decision-making among Kiang,whereby copying neighbors provides the wisdom to thrive in harsh conditions.This study also suggests that animals'spatial patterns in orientation depend largely ontheirbehavioral states inachieving synchronization.
文摘Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.
文摘In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.
基金funded by the by the Youth Program of the National Natural Science Foundation of China(Grants No.42001243,and 42201311)the Humanities and Social Science Project of the Ministry of Education,China(Grants No.20YJC630212,and 22YJCZH071)+1 种基金the Youth Program of the Natural Science Foundation of Shandong Province,China(Grants No.ZR2020QD008)Frontier Science Research Support Program,Management College,OUC(Grants No.MCQYZD2305,and MCQYYB2309).
文摘Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.
基金Under the auspices of National Social Science Foundation of China (No.21BJY202)。
文摘There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
基金funded by the National Natural Science Foundation of China(42271313)the Chinese Academy of Agricultural Sciences Innovation Project(CAAS-ASTIP2021-AII)the Central Public-interest Scientific Institution Basal Research Fund,China(JBYW-AII-2022-06,JBYWAII-2022-40)。
文摘The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.
基金The National Key Research and Development Program of China under contact No.2021YFC3101702the Natural Science Foundation of Zhejiang Province under contact Nos LY22D060006 and LY14D060007+1 种基金the Key R&D Program of Zhejiang under contact No.2022C03044the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) under contact No.SZ2001。
文摘Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.