Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( ...Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.展开更多
The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - G...The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - Grid Technology. As an emerging computational and networking infrastructure, Grid Computing is designed to provide pervasive, uniform and reliable access to data, computational and human resources distributed in a dynamic, heterogeneous environment. On the other hand, the development of Geographic Information System (GIS) has been highly influenced by the evolution of information technology such as the Internet, telecommunications, software and various types of computing technology. In particular, in the distributed GIS domain, the development However, due to the closed and centralized has made significant impact in the past decade. legacy of the architecture and the lack of interoperability, modularity, and flexibility, current distributed GIS still cannot fully accommodate the distributed, dynamic, heterogeneous and speedy development in network and computing environments. Hence, the development of a high performance distributed GIS system is still a challenging task. So, the development of Grid computing technology undoubtedly provides a unique opportunity for distributed GIS, and a Grid Computing based GIS paradigm becomes inevitable. This paper proposes a new computing platform based distributed GIS framework - the Grid Geographic Information System (G^2IS).展开更多
Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
基金supported by the Special Scientific Research Fund of China Earthquake Administration(201308018-5,201108002)
文摘Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.
文摘The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - Grid Technology. As an emerging computational and networking infrastructure, Grid Computing is designed to provide pervasive, uniform and reliable access to data, computational and human resources distributed in a dynamic, heterogeneous environment. On the other hand, the development of Geographic Information System (GIS) has been highly influenced by the evolution of information technology such as the Internet, telecommunications, software and various types of computing technology. In particular, in the distributed GIS domain, the development However, due to the closed and centralized has made significant impact in the past decade. legacy of the architecture and the lack of interoperability, modularity, and flexibility, current distributed GIS still cannot fully accommodate the distributed, dynamic, heterogeneous and speedy development in network and computing environments. Hence, the development of a high performance distributed GIS system is still a challenging task. So, the development of Grid computing technology undoubtedly provides a unique opportunity for distributed GIS, and a Grid Computing based GIS paradigm becomes inevitable. This paper proposes a new computing platform based distributed GIS framework - the Grid Geographic Information System (G^2IS).
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.