期刊文献+
共找到86,716篇文章
< 1 2 250 >
每页显示 20 50 100
Sparse pipeline wall information-based data-driven reconstruction for solid–liquid two-phase flow in flexible vibrating pipelines 被引量:1
1
作者 Shengpeng Xiao Chuyi Wan +6 位作者 Hongbo Zhu Dai Zhou Juxi Hu Mengmeng Zhang Yuankun Sun Yan Bao Ke Zhao 《International Journal of Mining Science and Technology》 2025年第11期1885-1903,共19页
Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefor... Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline. 展开更多
关键词 Particles Solid-liquid two-phase flow Vibration Flexible pipelines Deep learning reconstruction
在线阅读 下载PDF
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
2
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds sparse clouds Lightweight models
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
3
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
Non-Neural 3D Nasal Reconstruction:A Sparse Landmark Algorithmic Approach for Medical Applications
4
作者 Nguyen Khac Toan Ho Nguyen Anh Tuan Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第5期1273-1295,共23页
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n... This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications. 展开更多
关键词 Nose reconstruction 3D reconstruction medical applications algorithmic reconstruction enhanced 3D model
在线阅读 下载PDF
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
5
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation reconstruction spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
A novel decellularized conjunctival stroma biomaterial for conjunctival reconstruction following pterygium surgery
6
作者 Shang Li Jing-Yi Wang +3 位作者 Shi-Jing Deng Xiao-Dan Hu Fei Luo Ying Jie 《International Journal of Ophthalmology(English edition)》 2026年第1期48-55,共8页
AIM:To evaluate the efficacy and safety of decellularized conjunctival stroma(DCS)as a novel biomaterial by comparing its grafting outcomes with amniotic membrane(AM)when used for conjunctival reconstruction after pri... AIM:To evaluate the efficacy and safety of decellularized conjunctival stroma(DCS)as a novel biomaterial by comparing its grafting outcomes with amniotic membrane(AM)when used for conjunctival reconstruction after primary pterygium excision.METHODS:This randomized,parallel-controlled study with allocation concealment enrolled 40 patients with primary pterygium.Participants were randomly assigned to two groups using the sealed envelope method:the DCS group(n=20)and the AM group(n=18),receiving DCS and AM grafts respectively.Slit-lamp photography of the operative eyes was performed preoperatively and at 1,3,5,7,10,30,90,and 180d postoperatively.Best-corrected visual acuity(BCVA)and symptom scores were recorded simultaneously.In vivo confocal microscopy was conducted at 3 and 6mo postoperatively.RESULTS:All participants exhibited improved postoperative symptoms.The mean age was 60±9y(male/female ratio:6/14)in the DCS group and 56±12y(male/female ratio:7/11)in the AM group.The average epithelial healing time was 9.89±3.54d in the DCS group and 8.17±1.34d in the AM group(P=0.084).One recurrence case was observed in each group.Postoperative graft hemorrhage was significantly more severe in the DCS group than in the AM group only at 30d postoperatively(P=0.011).In vivo confocal microscopy revealed conjunctival epithelial cell growth in both groups at 90d postoperatively,while clear corneo-conjunctival cell boundaries were observed until 180d postoperatively.CONCLUSION:DCS used in primary pterygium surgery has a safety profile comparable to AM.It promotes rapid postoperative conjunctival healing,achieves a relatively low pterygium recurrence rate,and yields outcomes similar to AM.DCS provides a novel biomaterial option for conjunctival reconstruction after pterygium excision and the treatment of other conjunctival injuries. 展开更多
关键词 PTERYGIUM decellularized conjunctival stroma amniotic membrane conjunctival reconstruction RECURRENCE graft hemorrhage
原文传递
Geophysical data sparse reconstruction based on L0-norm minimization 被引量:6
7
作者 陈国新 陈生昌 +1 位作者 王汉闯 张博 《Applied Geophysics》 SCIE CSCD 2013年第2期181-190,236,共11页
Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transfo... Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm. 展开更多
关键词 Geophysical data sparse reconstruction LO-norm minimization iterativelyreweighted least squares fast iterative hard thresholding
在线阅读 下载PDF
Single frame super-resolution reconstruction based on sparse representation 被引量:2
8
作者 谢超 路小波 曾维理 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期177-182,共6页
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation... In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality. 展开更多
关键词 single frame super-resolution reconstruction sparse representation local orientation estimation principalcomponent analysis (PCA) consistency of gradients
在线阅读 下载PDF
DOA estimation method for wideband signals by block sparse reconstruction
9
作者 Jiaqi Zhen Zhifang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期20-27,共8页
For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based ... For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low. 展开更多
关键词 direction of arrival(DOA)estimation wideband signal prolate spheroidal wave function(PSWF) block sparse reconstruction.
在线阅读 下载PDF
A FAST CONVERGING SPARSE RECONSTRUCTION ALGORITHM IN GHOST IMAGING 被引量:2
10
作者 Li Enrong Chen Mingliang +2 位作者 Gong Wenlin Wang Hui Han Shensheng 《Journal of Electronics(China)》 2012年第6期617-620,共4页
A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex ... A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex optimization. Tests using experimental data show that, compared with the algorithm of Gradient Projection for Sparse Reconstruction (GPSR), the proposed algorithm yields better results with less computation work. 展开更多
关键词 Compressive sensing Ghost Imaging (GI) sparse reconstruction Karush-Kuhn-Tucker (KKT) condition Gradient projection
在线阅读 下载PDF
An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal 被引量:1
11
作者 陈勇翡 高红霞 +1 位作者 吴梓灵 康慧 《Optoelectronics Letters》 EI 2018年第1期57-60,共4页
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp... Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures. 展开更多
关键词 SVD AK An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal MSR
原文传递
Reconstruction method of irregular seismic data with adaptive thresholds based on different sparse transform bases 被引量:4
12
作者 Zhao Hu Yang Tun +4 位作者 Ni Yu-Dong Liu Xing-Gang Xu Yin-Po Zhang Yi-Lei Zhang Guang-Rong 《Applied Geophysics》 SCIE CSCD 2021年第3期345-360,432,共17页
Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism... Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently. 展开更多
关键词 irregular acquisition seismic data reconstruction adaptive threshold f-x domain OpenMP parallel optimization sparse transformation
在线阅读 下载PDF
Abnormal behavior detection by causality analysis and sparse reconstruction 被引量:1
13
作者 WANG Jun XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2842-2852,共11页
A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were ... A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were adopted. The low level visual features, which included trajectory shape descriptor, speeded up robust features and histograms of optical flow, were used to describe properties of individual behavior, and causality features obtained by causality analysis were introduced to depict the interaction information among a set of objects. In order to cope with feature noisy and uncertainty, a method for multiple-object anomaly detection was presented via a sparse reconstruction. The abnormality of the testing sample was decided by the sparse reconstruction cost from an atomically learned dictionary. Experiment results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for abnormal behavior detection. 展开更多
关键词 ABNORMAL behavior detection GRANGER CAUSALITY test CAUSALITY FEATURE sparse reconstruction
在线阅读 下载PDF
Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm 被引量:3
14
作者 Jingjing Yu Jingxing Cheng +1 位作者 Yuqing Hou Xiaowei He 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第3期50-58,共9页
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high... Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels. 展开更多
关键词 Fluorescence molecular tomography sparse regularization reconstruction algorithm least absolute shrinkage and selection operator.
原文传递
Image super-resolution reconstruction based on sparse representation and residual compensation 被引量:1
15
作者 史郡 王晓华 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期394-399,共6页
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co... A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality. 展开更多
关键词 super-resolution reconstruction sparse representation image patch residual compen-sation
在线阅读 下载PDF
SAR Image Despeckling by Sparse Reconstruction Based on Shearlets 被引量:4
16
作者 JI Jian LI Xiao +2 位作者 XU Shuang-Xing LIU Huan HUANG Jing-Jing 《自动化学报》 EI CSCD 北大核心 2015年第8期1495-1501,共7页
关键词 SAR图像 相干斑抑制 稀疏 合成孔径雷达图像 贝叶斯估计 重构 散斑噪声 乘性噪声
在线阅读 下载PDF
Sparse Seismic Data Reconstruction Based on a Convolutional Neural Network Algorithm 被引量:1
17
作者 HOU Xinwei TONG Siyou +3 位作者 WANG Zhongcheng XU Xiugang PENG Yin WANG Kai 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期410-418,共9页
At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achievi... At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform. 展开更多
关键词 deep learning convolutional neural network seismic data reconstruction compressed sensing sparse collection supervised learning unsupervised learning
在线阅读 下载PDF
Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization 被引量:1
18
作者 金朝 张瀚铭 +3 位作者 闫镔 李磊 王林元 蔡爱龙 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期458-465,共8页
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in r... Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. 展开更多
关键词 Fan iterative reconstruction Fourier-based iterative reconstruction technique alternating directionmethod non-uniform fast Fourier transform
原文传递
Inter-Carrier Interference-Aware Sparse Time-Varying Underwater Acoustic Channel Estimation Based on Fast Reconstruction Algorithm 被引量:2
19
作者 Zhengqiang Yan Xinghai Yang +1 位作者 Lijun Sun Jingjing Wang 《China Communications》 SCIE CSCD 2021年第3期216-225,共10页
In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of cal... In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy. 展开更多
关键词 underwater acoustic communication OFDM sparse channel estimation OIP-FOMP
在线阅读 下载PDF
Compressed sensing sparse reconstruction for coherent field imaging
20
作者 曹蓓 罗秀娟 +2 位作者 张羽 刘辉 陈明徕 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期79-84,共6页
Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the... Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the sampling process, we propose a genuine sparse reconstruction scheme based on compressed sensing theory. By analyzing the sparsity of the received signal in the Fourier spectrum domain, we accomplish an effective random projection and then reconstruct the return signal from as little as 10% of traditional samples, finally acquiring the target image precisely. The results of the numerical simulations and practical experiments verify the correctness of the proposed method, providing an efficient processing approach for imaging fast-moving targets in the future. 展开更多
关键词 coherent field imaging computational imaging sparse reconstruction compressed sensing
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部