期刊文献+
共找到12,135篇文章
< 1 2 250 >
每页显示 20 50 100
Transfer learning with deep sparse auto-encoder for speech emotion recognition
1
作者 Liang Zhenlin Liang Ruiyu +3 位作者 Tang Manting Xie Yue Zhao Li Wang Shijia 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期160-167,共8页
In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amou... In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amount of data in the target domain by training the deep sparse auto-encoder,so that the encoder can learn the low-dimensional structural representation of the target domain data.Then,the source domain data and the target domain data are coded by the trained deep sparse auto-encoder to obtain the reconstruction data of the low-dimensional structural representation close to the target domain.Finally,a part of the reconstructed tagged target domain data is mixed with the reconstructed source domain data to jointly train the classifier.This part of the target domain data is used to guide the source domain data.Experiments on the CASIA,SoutheastLab corpus show that the model recognition rate after a small amount of data transferred reached 89.2%and 72.4%on the DNN.Compared to the training results of the complete original corpus,it only decreased by 2%in the CASIA corpus,and only 3.4%in the SoutheastLab corpus.Experiments show that the algorithm can achieve the effect of labeling all data in the extreme case that the data set has only a small amount of data tagged. 展开更多
关键词 sparse auto-encoder transfer learning speech emotion recognition
在线阅读 下载PDF
Method for denoising and reconstructing radar HRRP using modified sparse auto-encoder 被引量:3
2
作者 Chen GUO Haipeng WANG +2 位作者 Tao JIAN Congan XU Shun SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1026-1036,共11页
A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environ... A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environment are contaminated by strong noise.Effective pre-processing of the HRRP data can greatly improve the accuracy of target recognition.In this paper, a denoising and reconstruction method for HRRP is proposed based on a Modified Sparse Auto-Encoder, which is a representative non-linear model.To better reconstruct the HRRP, a sparse constraint is added to the proposed model and the sparse coefficient is calculated based on the intrinsic dimension of HRRP.The denoising of the HRRP is performed by adding random noise to the input HRRP data during the training process and fine-tuning the weight matrix through singular-value decomposition.The results of simulations showed that the proposed method can both reconstruct the signal with fidelity and suppress noise effectively, significantly outperforming other methods, especially in low Signal-to-Noise Ratio conditions. 展开更多
关键词 High resolution range profile Intrinsic dimension Modified sparse autoencoder Signal denoise Signal sparse reconstruction
原文传递
Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking
3
作者 AN Qi-chang WANG Kun +2 位作者 LIU Xin-yue LI Hong-wen ZHU Jia-kang 《中国光学(中英文)》 北大核心 2025年第2期401-413,共13页
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ... To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects. 展开更多
关键词 stripe tracking wavefront aberration sparse aperture telescope co-phasing adjustment
在线阅读 下载PDF
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
4
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 Compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
A Bilinear Sparse Domination for the Maximal Calder´on Commutator with Rough Kernel
5
作者 WANG Meizhong ZHAO Junyan 《数学进展》 北大核心 2025年第5期1059-1074,共16页
LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional... LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained. 展开更多
关键词 Calderon commutator Fourier transform multiplier operator approximation bilinear sparse domination rough kernel
原文传递
Sparse Recovery of Decaying Signals by the Piecewise Generalized Orthogonal Matching Pursuit Algorithm
6
作者 Hanbing LIU Chongjun LI 《Journal of Mathematical Research with Applications》 2025年第6期813-834,共22页
In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Gen... In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors. 展开更多
关键词 piecewise sparse recovery decaying sparse signals mutual coherence greedy algorithm
原文传递
A Deep Auto-encoder Based Security Mechanism for Protecting Sensitive Data Using AI Based Risk Assessment
7
作者 Lavanya M Mangayarkarasi S 《Journal of Harbin Institute of Technology(New Series)》 2025年第4期90-98,共9页
Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,b... Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection. 展开更多
关键词 data mining sensitive data deep auto-encoders
在线阅读 下载PDF
Hysteresis modeling and compensation of piezo actuator with sparse regression
8
作者 JIN Yu WANG Xucheng +3 位作者 XU Yunlang YU Jianbo LU Qiaodan YANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第1期48-61,共14页
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato... Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved. 展开更多
关键词 sparse identification of nonlinear dynamics(SINDy) hysteresis loop relay operator sparse regression piezo actuator
在线阅读 下载PDF
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
9
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 sparse graph neural network Polar codes Bursty interference sparse factor graph Message passing neural network
在线阅读 下载PDF
基于Sparse-Group-Lasso方法的半监督广义可加信贷违约判别模型应用研究
10
作者 杨慧 王博雅 《中央民族大学学报(自然科学版)》 2025年第2期13-20,32,共9页
本文构建了一种新的个人信用贷款违约判别模型,该模型结合了半监督学习和广义半参数可加Logistics回归模型,同时加入Sparse-Group-Lasso(SGL)变量选择技术,使得模型可以同时进行参数估计和显著变量选择,并能充分利用无标记样本信息。此... 本文构建了一种新的个人信用贷款违约判别模型,该模型结合了半监督学习和广义半参数可加Logistics回归模型,同时加入Sparse-Group-Lasso(SGL)变量选择技术,使得模型可以同时进行参数估计和显著变量选择,并能充分利用无标记样本信息。此外,本文利用半监督Logistic回归模型,通过最大化判别精度G-mean来确定最佳违约判别临界点,解决了数据不平衡问题,并将以上模型和方法应用于个人信用贷款违约风险评估中。 展开更多
关键词 半监督 半参数 sparse-Group-Lasso 信用评分
在线阅读 下载PDF
Deblending by sparse inversion and its applications to high-productivity seismic acquisition:Case studies
11
作者 Shao-Hua Zhang Jia-Wen Song 《Petroleum Science》 2025年第4期1548-1565,共18页
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.... Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately. 展开更多
关键词 Deblending sparse inversion Simultaneous sources High-productivity Seismic acquisition
原文传递
A Survey of Multilingual Neural Machine Translation Based on Sparse Models
12
作者 Shaolin Zhu Dong Jian Deyi Xiong 《Tsinghua Science and Technology》 2025年第6期2399-2418,共20页
Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively M... Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively MNMT,when based on sparse models,offers significant improvements in parameter efficiency and reduces interference compared to its dense model counterparts.Various methods have been proposed to leverage sparse models for enhancing translation quality.However,the lack of a thorough survey has hindered the identification and further investigation of the most promising approaches.To address this gap,we provide an exhaustive examination of the current research landscape in massively MNMT,with a special emphasis on sparse models.Initially,we categorize the various sparse model-based approaches into distinct classifications.We then delve into each category in detail,elucidating their fundamental modeling principles,core issues,and the challenges they face.Wherever possible,we conduct comparative analyses to assess the strengths and weaknesses of different methodologies.Moreover,we explore potential future research avenues for MNMT based on sparse models.This survey serves as a valuable resource for both newcomers and established experts in the field of MNMT,particularly those interested in sparse model applications. 展开更多
关键词 neural machine translation sparse models MULTILINGUAL dense model
原文传递
Hierarchical Shape Pruning for 3D Sparse Convolution Networks
13
作者 Haiyan Long Chonghao Zhang +2 位作者 Xudong Qiu Hai Chen Gang Chen 《Computers, Materials & Continua》 2025年第8期2975-2988,共14页
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des... 3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems. 展开更多
关键词 Shape pruning model compressing 3D sparse convolution
在线阅读 下载PDF
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
14
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds sparse clouds Lightweight models
在线阅读 下载PDF
Sparse optimization of planar radio antenna arrays using a genetic algorithm
15
作者 Jiarui Di Liang Dong Wei He 《Astronomical Techniques and Instruments》 2025年第2期100-110,共11页
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ... Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems. 展开更多
关键词 Planar antenna array sparse optimization Genetic algorithm Wide-angle scanning
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
16
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
17
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
A Sparse Depth Point Set Matching Method Based on Panoramic Disparity
18
作者 LIU Shuai ZHAO Lingli +1 位作者 CHEN Jun SUN Min 《Journal of Geodesy and Geoinformation Science》 2025年第3期92-107,共16页
The existing panoramic image matching methods are difficult to overcome the non-uniform features of the projection transformation of the target object,and hence the issue of unstable corresponding points matching is u... The existing panoramic image matching methods are difficult to overcome the non-uniform features of the projection transformation of the target object,and hence the issue of unstable corresponding points matching is usually induced.This paper aims to solve the difficulty by proposing a sparse depth point set matching method based on panoramic disparity.By constructing a panoramic disparity model of stereo panoramic images,the disparity between corresponding points can be precisely estimated,and the robustness and effectiveness of corresponding points matching between stereo panoramic images is improved under the epipolar geometric constraints.Firstly,by defining the panoramic disparity,the corresponding angle of panoramic disparity is derived,and the matching areas of corresponding points based on the disparity corresponding angle difference are partitioned.Secondly,the optimization strategy in the matching process of corresponding points is constructed to provide stable matching results for generating sparse depth maps based on the disparity region range and epipolar geometric relationship.Experiments show that the proposed method can not only obtain more stable matching results but also exhibit higher computational efficiency than existing algorithms. 展开更多
关键词 panoramic disparity sparse depth point set feature matching
在线阅读 下载PDF
Sparse-view irradiation processing volumetric additive manufacturing
19
作者 Huiyuan Wang Fangyuan Gao +6 位作者 Yu Shi Kai Wang Xinbo Wei Chunyang Ma Xiewen Wen Xueli Chen Jiebo Li 《International Journal of Extreme Manufacturing》 2025年第6期376-388,共13页
Volumetric additive manufacturing(VAM) transforms traditional 2D light pattern projection into spatial light field energy superposition,maximizing the utilization of radiated light and allowing for ultra-fast,support-... Volumetric additive manufacturing(VAM) transforms traditional 2D light pattern projection into spatial light field energy superposition,maximizing the utilization of radiated light and allowing for ultra-fast,support-free printing,which has specific applications in fields such as life sciences and optics.However,traditional VAM processes require numerous projections and extensive computational preparation,limiting practical applications due to low projection efficiency and prolonged calculation times.In this study,we developed sparse-view irradiation processing VAM(SVIP-VAM),employing an optimized odd-even(OE) irradiation strategy inspired by sparse-view computed tomography.Theoretically,we demonstrated structural contour reconstruction feasibility with as few as 8 projections.Using this sparse-view approach,we achieved high-quality fabrication with only 15 projections,enhancing each projection efficiency by over 60 times and reducing projection set computational time by nearly 10-fold.Ultimately,this efficient sparse-view method significantly expands VAM applications into fields requiring rapid manufacturing,such as tissue engineering,medical implants,and aerospace manufacturing. 展开更多
关键词 volumetric additive manufacturing 3D printing sparse view odd-even irradiation
在线阅读 下载PDF
Improved Spectral Amplitude Modulation Based on Sparse Feature Adaptive Convolution for Variable Speed Fault Diagnosis of Bearing
20
作者 Jiawei Lin Changkun Han +3 位作者 Wei Lu Liuyang Song Peng Chen Huaqing Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期31-43,共13页
Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplit... Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplitude modulation(ISAM)based on sparse feature adaptive convolution(SFAC)is proposed to enhance the fault features under variable speed conditions.First,an optimal bi-damped wavelet construction method is proposed to learn signal impulse features,which selects the optimal bi-damped wavelet parameters with correlation criterion and particle swarm optimization.Second,a convolutional basis pursuit denoising model based on an optimal bi-damped wavelet is proposed for resolving sparse impulses.A model regularization parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed.Then,an ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.Finally,the type of variable speed faults is determined by order spectrum analysis.Various experimental results,such as spectral amplitude modulation and Morlet wavelet matching,verify the effectiveness and advantages of the ISAM-SFAC method. 展开更多
关键词 bearing fault diagnosis feature enhancement sparse representation spectral amplitude modulation variable speed
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部