Pulse-width modulation(PWM)sprays can improve flow accuracy by adjusting duty cycle and frequency signal which accurately controls the relative proportion of opening time of solenoid valve.The objective of this resear...Pulse-width modulation(PWM)sprays can improve flow accuracy by adjusting duty cycle and frequency signal which accurately controls the relative proportion of opening time of solenoid valve.The objective of this research was to determine the impacts of PWM duty cycle and frequency on spray drift characteristic.Spray tests were conducted in a wind tunnel with a PWM variable-rate spraying system.The airborne drift and sediment drift were determined with tracer method,and the drift potential reduction(DPR)compared with reference condition of 100%duty cycle at vertical profile and horizontal planes were calculated,respectively.The results show that,at a given frequency,droplet size decreases with the increase of duty cycle,the main reason is that the liquid does not reach full pattern development at lower duty cycle.Duty cycle has a greater impact than the frequency on spray drift,the influence weights of duty cycle on airborne drift and sediment drift were 88.32%and 77.89%,respectively.At a lower PWM frequency,in addition to the droplet size,the spray drift may be affected by the pulsed spray pattern.From the perspective of reducing spray drift,it is recommended that the PWM duty cycle should be set in the range of 20%-70%to reduce the potential drift in PWM sprays.This research provides a pesticide drift reduction scheme for variable spraying technology,which can serve as a theoretical basis for PWM parameter selection.展开更多
In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection sho...In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.展开更多
Eigenaxis rotation is generally regarded as a near-minimum time strategy for rapid attitude maneuver due to its constitution of the shortest angular path between two orientations. In this paper, the robust control pro...Eigenaxis rotation is generally regarded as a near-minimum time strategy for rapid attitude maneuver due to its constitution of the shortest angular path between two orientations. In this paper, the robust control problem of rigid spacecraft eigenaxis rotation is investigated via time-varying sliding mode control (TVSMC) technique. Both external disturbance and parameter variation are taken into account. Major features of this robust eigenaxis rotation strategy are first demonstrated by a TVSMC algorithm. Global sliding phase is proved as well as the closed-loop system stability. Additionally, the necessary condition for eigenaxis rotation is provided. Subsequently, to suppress the global chattering and improve the control accuracy, a disturbance observer-based time-varying sliding mode control (DOTVSMC) algorithm is presented, where the boundary layer approach is used to soften the chattering and a disturbance observer is designed to attenuate undesired effect. The spacecraft attitude is represented by modified Rodrigues parameter (MRP) for the non-redundancy. Finally, a numerical simulation is employed to illustrate the effectiveness of the proposed strategy, where the pulse-width pulse-frequency (PWPF) technique is utilized to modulate the on-off thrusters.展开更多
A test bench of ABS/ASR integrated hydraulic system is developed by using pulse-width modulation (PWM) technology. The effective duty ratio range of ABS outlet valve has been tested in PWM control. With 50 Hz carrie...A test bench of ABS/ASR integrated hydraulic system is developed by using pulse-width modulation (PWM) technology. The effective duty ratio range of ABS outlet valve has been tested in PWM control. With 50 Hz carrier wave frequency, the tests are performed to determine the correspondence between duty ratio and the wheel cylinder pressure variation. The duty ratio range of ABS outlet valve in PWM control is determined and an experimental model of pressure reduction velocity (PRV) of wheel cylinder using PWM control is established. By comparison and test of the experimental model and realization of controlling the duty ratio of ABS outlet valves, the fine regulation of wheel cylinder PRV is realized in the working of ABS/ASR braking regulation, which is important and valuable to the improvement of the ABS/ASR controlling effect.展开更多
This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems s...This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.展开更多
基金The authors acknowledge that this research was financially supported by National Key R&D Program of China(2019YFD1101102-3)National Natural Science Foundation of China(32071907)+1 种基金Outstanding Scientist Cultivation Project of Beijing Academy of Agriculture and Forestry Sciences(JKZX202205)Qingyuan Smart Agriculture Research Institute+New R&D Institutions Construction in North and West Guangdong(2019B090905006).
文摘Pulse-width modulation(PWM)sprays can improve flow accuracy by adjusting duty cycle and frequency signal which accurately controls the relative proportion of opening time of solenoid valve.The objective of this research was to determine the impacts of PWM duty cycle and frequency on spray drift characteristic.Spray tests were conducted in a wind tunnel with a PWM variable-rate spraying system.The airborne drift and sediment drift were determined with tracer method,and the drift potential reduction(DPR)compared with reference condition of 100%duty cycle at vertical profile and horizontal planes were calculated,respectively.The results show that,at a given frequency,droplet size decreases with the increase of duty cycle,the main reason is that the liquid does not reach full pattern development at lower duty cycle.Duty cycle has a greater impact than the frequency on spray drift,the influence weights of duty cycle on airborne drift and sediment drift were 88.32%and 77.89%,respectively.At a lower PWM frequency,in addition to the droplet size,the spray drift may be affected by the pulsed spray pattern.From the perspective of reducing spray drift,it is recommended that the PWM duty cycle should be set in the range of 20%-70%to reduce the potential drift in PWM sprays.This research provides a pesticide drift reduction scheme for variable spraying technology,which can serve as a theoretical basis for PWM parameter selection.
文摘In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.
基金National Natural Science Foundation of China (108072030) Technology Innovation Program of Beijing Institute of Technology (CX0428)
文摘Eigenaxis rotation is generally regarded as a near-minimum time strategy for rapid attitude maneuver due to its constitution of the shortest angular path between two orientations. In this paper, the robust control problem of rigid spacecraft eigenaxis rotation is investigated via time-varying sliding mode control (TVSMC) technique. Both external disturbance and parameter variation are taken into account. Major features of this robust eigenaxis rotation strategy are first demonstrated by a TVSMC algorithm. Global sliding phase is proved as well as the closed-loop system stability. Additionally, the necessary condition for eigenaxis rotation is provided. Subsequently, to suppress the global chattering and improve the control accuracy, a disturbance observer-based time-varying sliding mode control (DOTVSMC) algorithm is presented, where the boundary layer approach is used to soften the chattering and a disturbance observer is designed to attenuate undesired effect. The spacecraft attitude is represented by modified Rodrigues parameter (MRP) for the non-redundancy. Finally, a numerical simulation is employed to illustrate the effectiveness of the proposed strategy, where the pulse-width pulse-frequency (PWPF) technique is utilized to modulate the on-off thrusters.
基金the National Natural Science Foundation of China (50122155)
文摘A test bench of ABS/ASR integrated hydraulic system is developed by using pulse-width modulation (PWM) technology. The effective duty ratio range of ABS outlet valve has been tested in PWM control. With 50 Hz carrier wave frequency, the tests are performed to determine the correspondence between duty ratio and the wheel cylinder pressure variation. The duty ratio range of ABS outlet valve in PWM control is determined and an experimental model of pressure reduction velocity (PRV) of wheel cylinder using PWM control is established. By comparison and test of the experimental model and realization of controlling the duty ratio of ABS outlet valves, the fine regulation of wheel cylinder PRV is realized in the working of ABS/ASR braking regulation, which is important and valuable to the improvement of the ABS/ASR controlling effect.
基金the Power Electronics Science Education Development Program of Delta Environmental & EducationFoundation (Grant No.DERO2007014)the Scientific Service of the Embassy of France in China (Grant No.K06D20)
文摘This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.