The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly...In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.展开更多
We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-...We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.展开更多
We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),org...We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.展开更多
Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previo...Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.展开更多
Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China ...Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.展开更多
Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tra...Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.展开更多
To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Na...Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,...0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.展开更多
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob...Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.展开更多
Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and ...Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.展开更多
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu...Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.展开更多
The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothr...The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金supported by the National Natural Science Foundation of China(42430303)Strategy Priority Research Program(Category B)of the Chinese Academy of Sciences(XDB0710000)+2 种基金National Natural Science Foundation of China(42288201)the National Key R&D Program of China(2023YFF0803203)the IGGCAS start-up funding(Grant No.E251510101).
文摘In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.
基金supported by National Key R&D grant from the Ministry of Science and Technology of China(Nos.2021YFA1601600,2023YFA1606200)National Science Foundation of China(Nos.12090062,12105008)the Major State Basic Research Development Program of China.
文摘We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20240036)the National Natural Science Foundation of China(Grant Nos.U24A20515,22276099,and 22361162668)Guangxi Key Research and Development Program,China(Grant No.Guike AB24010074)。
文摘We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.
基金supported by the National Natural Science Foundation of China(Nos.41905108 and 42130704).
文摘Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.
基金supported by the National Natural Science Foundation of China(No.41975156)and the Fundamental Research Funds for the Central Universities.
文摘Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.
文摘Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
文摘Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金funded by the National Key R&D Program of China(No.2020YFC150071)partly supported by the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)and the Research Funds for the Interdisciplinary Projects,CHU(No.300104240914)。
文摘0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
基金supported by the Special Funds for Chengde national innovation demonstration area construction of science and technology special project sustainable development agenda(No.202104F001)the National Basic Research Program of China(No.2019YFC0408602).
文摘Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204000).
文摘Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.
基金supported by the National Natural Science Foundation of China(Nos.42030707,72394404)the International Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Fundamental Research Fund for the Central Universities(Nos.20720210083,20720210082).
文摘Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.
基金supported by the Science and Technology Program of Fujian Province,China(No.2023R1014002)the National Natural Science Foundation of China(No.41471390).
文摘The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.