期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
A Simulated Annealing Algorithm for Training Empirical Potential Functions of Protein Folding 被引量:1
1
作者 WANGYu-hong LIWei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第1期73-77,共5页
In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a so... In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a solution of the problem based upon the simulated annealing algorithm. This simulated annealing algorithm is indispensable for developing and testing highly refined empirical potential functions. 展开更多
关键词 empirical potential function of protein folding TRAINING Simulated annealing Greedy algorithm
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
2
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
NON-LINEAR DYNAMIC MODEL RETRIEVAL OF SUBTROPICAL HIGH BASED ON EMPIRICAL ORTHOGONAL FUNCTION AND GENETIC ALGORITHM
3
作者 张韧 洪梅 +4 位作者 孙照渤 牛生杰 朱伟军 闵锦忠 万齐林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1645-1653,共9页
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica... Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high. 展开更多
关键词 genetic algorithm empirical orthogonal function non-linear model retrieval subtropical high
在线阅读 下载PDF
Segmented second algorithm of empirical mode decomposition
4
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition (EMD) algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
在线阅读 下载PDF
Recalibration of four empirical reference crop evapotranspiration models using a hybrid Differential Evolution-Grey Wolf Optimizer algorithm
5
作者 Long Zhao Shuo Yang +4 位作者 Xinbo Zhao Yi Shi Shiming Feng Xuguang Xing Shuangchen Chen 《International Journal of Agricultural and Biological Engineering》 2025年第1期173-180,共8页
Accurate estimation of reference crop evapotranspiration(ET_(0))is essential for water resource management and irrigation scheduling.A multitude of empirical models have been employed to estimate ET_(0),yielding satis... Accurate estimation of reference crop evapotranspiration(ET_(0))is essential for water resource management and irrigation scheduling.A multitude of empirical models have been employed to estimate ET_(0),yielding satisfactory outcomes.However,the performance of each model is contingent upon the empirical parameters utilized.This study examines the applicability of four empirical ET_(0) models,namely the Makkink(Mak),Irmark-Allen(IA),improved Baier-Robertson(MBR),and Brutsaert-Stricker(BS)models.Meteorological data from 24 weather stations across various regions in China were procured and employed to assess the ET_(0) simulation results.The study employed the Differential Evolution(DE)optimization algorithm,Grey Wolf Optimizer(GWO)algorithm,and a hybrid algorithm that combines DE and GWO algorithms(DE-GWO algorithm)to optimize the parameters of the four empirical models.The findings revealed that the optimization algorithms significantly enhanced the regional adaptability of the four models,particularly the BS model.The DE-GWO algorithm demonstrated superior optimization performance(RMSE=0.055-0.372,R^(2)=0.912-0.998,MAE=0.037-0.311,and FS=0.864-0.982)compared to the DE(RMSE=0.101-2.015,R^(2)=0.529-0.997,MAE=0.075-1.695,and FS=0.383-0.967)and GWO(RMSE=0.158-0.915,R^(2)=0.694-0.987,MAE=0.111-0.701,and FS=0.688-0.947)algorithms.The DE-GWO-optimized BS model was the most accurate and improved,followed by the MBR model.The IA and Mak models also showed slightly better performance after optimization with the DE-GWO algorithm.The DE-GWO-optimized BS model performed better in the southern agricultural region than in other regions.It is recommended to utilize the DE-GWO to enhance the accurate prediction of empirical ET_(0) models across the nine agricultural regions of China. 展开更多
关键词 reference crop evapotranspiration empirical model nine agricultural regions of China hybrid algorithm Brutsaert-Stricker
原文传递
A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs
6
作者 葛玉磊 李树荣 曲珂馨 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1274-1278,共5页
In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical... In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The parameters of the new empirical equation are optimized with the hybrid RNA genetic algorithm(HRGA) based on the experimental data. The data is obtained from a typical low permeability reservoir well 54 core 27-1 in Gu Dong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified. 展开更多
关键词 empirical equation RELATIVE PERMEABILITY Hybrid RNA genetic algorithm Improved ITEM Low PERMEABILITY RESERVOIRS BARE bones particle SWARM
在线阅读 下载PDF
兼顾经济性、便捷性和公平性的公共服务设施区位问题研究
7
作者 孔云峰 郭浩 +4 位作者 李圆圆 张宗宁 连晨晨 张广利 翟石艳 《地球信息科学学报》 北大核心 2025年第5期1053-1067,共15页
[目的]区位问题广泛应用于公共服务设施布局规划。经典区位问题多以设施成本、出行距离成本或覆盖客户数量等效率指标为目标,空间公平性考虑不足。部分区位模型考虑服务空间公平性,但存在公平与效率指标难以协调、计算复杂度过高和模型... [目的]区位问题广泛应用于公共服务设施布局规划。经典区位问题多以设施成本、出行距离成本或覆盖客户数量等效率指标为目标,空间公平性考虑不足。部分区位模型考虑服务空间公平性,但存在公平与效率指标难以协调、计算复杂度过高和模型缺乏通用性等不足之处。针对现有区位问题之局限,本文提出了一个兼顾设施经济性、出行便捷性和空间公平性的双目标设施区位问题(CEEFLP)。[方法]CEEFLP有2个目标函数:最小化设施总成本函数,以及最小化出行距离和距离半方差聚合函数。前者优化设施经济性,后者平衡出行便捷性和空间公平性。为求解CEEFLP,设计了一个基于节点交换方法的迭代局部搜索(ILS)算法。[结果]14个基准案例计算结果表明:(1) ILS算法能够高效、高质量地求解CEEFLP,模型参数α为1、推荐值和0.001时,ILS求解结果与最优解或已知最好解的差距分别为0.09%、0.24%和0.41%;(2)设施成本预算确定时,可以通过出行成本小幅上升,换取所有公平性指标的改善;出行距离增加2.17%,出行距离标准差和基尼系数分别下降了7.95%和9.75%;(3)增加设施成本预算,既能够降低出行成本,也能够改善空间公平性指标;设施成本每增加1%,出行距离平均下降0.37%,出行距离标准差和基尼系数分别下降0.31%和0.31%。[结论]CEEFLP能够为设施选址提供一组Pareto最优解,兼顾到设施成本、出行成本和空间公平性,对于公共服务设施布局规划具有实用价值。 展开更多
关键词 区位问题 公共服务 设施成本 空间公平性 数学模型 启发式算法 实证分析
原文传递
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
8
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机
在线阅读 下载PDF
基于MIC特征提取与ICEEMD-RIME-DHKELM的建筑业碳排放预测模型 被引量:2
9
作者 张新生 聂达文 陈章政 《环境工程》 2025年第4期46-58,共13页
为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的... 为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算1992—2021年我国建筑业碳排放量,基于STIRPAT模型选取年末总人口数、国内生产总值、建筑业房屋竣工面积和能源结构等17个影响建筑业碳排放量的因素,然后利用灰色关联分析和MIC方法两阶段筛选出12个关键影响因素;其次,使用ICEEMD将建筑业碳排放量分解为多个平稳序列和一个残差项,并将其分别代入RIME算法优化关键参数后的DHKELM模型中。最后,将各分解序列的预测结果相加获得建筑业碳排放预测值,并对比分析多种基准模型的预测结果。结果显示:MIC-ICEEMD-RIME-DHKELM模型的预测性能最优,其均方根误差、平均绝对误差、平均绝对百分比误差和绝对相关系数分别为0.2782亿t、0.2672亿t、1.3783%和0.9576,均优于其他模型,证明该模型适用于建筑业碳排放量的预测。该研究成果为建筑业的低碳发展提供理论支持和技术参考。 展开更多
关键词 建筑业 碳排放 最大信息系数 改进互补集合经验模态分解 雾凇优化算法 深度混合核极限学习机
原文传递
基于机器学习耦合启发式算法和数据预处理的无负约束组合风速预测
10
作者 付桐林 《太阳能学报》 北大核心 2025年第6期659-666,共8页
首先将人工神经网络(ANN)、支持向量机(SVM)及极值学习机(ELM)与集合经验模态分解(EEMD)和灰狼算法(GWO)相耦合,构建多个混合模型对中国黄土高原陇东区环县风电场风速进行预测,进而将各混合模型的预测结果作为输入变量,以预测误差平方... 首先将人工神经网络(ANN)、支持向量机(SVM)及极值学习机(ELM)与集合经验模态分解(EEMD)和灰狼算法(GWO)相耦合,构建多个混合模型对中国黄土高原陇东区环县风电场风速进行预测,进而将各混合模型的预测结果作为输入变量,以预测误差平方和最小为目标函数,构建无负约束的组合模型NNCT,并采用灰狼算法优化组合模型的权重,实现研究区域风电场风速的准确预测。数值结果表明,该模型可有效降低模型选择的风险,具有更高的预测精度。 展开更多
关键词 风速 预测 机器学习 灰狼算法 集合经验模态分解 组合模型
原文传递
基于参考帧的数字媒体视频图像信息隐藏算法
11
作者 邱欣欣 温强 何婧 《吉林大学学报(信息科学版)》 2025年第2期377-383,共7页
由于置乱和提取过程的不可逆性,使数字媒体视频图像信息在提取过程中无法完全恢复隐藏信息,导致信息的丢失或错误,降低了隐藏算法的有效性。为此,提出基于参考帧的数字媒体视频图像信息隐藏算法。首先,采用基于限邻域的经验模式分解(NLE... 由于置乱和提取过程的不可逆性,使数字媒体视频图像信息在提取过程中无法完全恢复隐藏信息,导致信息的丢失或错误,降低了隐藏算法的有效性。为此,提出基于参考帧的数字媒体视频图像信息隐藏算法。首先,采用基于限邻域的经验模式分解(NLEMD:Neighborh ood Limited Empirical Mode Decomposition)算法对数字媒体视频图像实施图像增强处理,提高视频图像质量;其次,采用Arnold变换置乱方法对增强后的图像实施置乱变换,完成信息隐藏的预处理;最后,通过基于参考帧的信息隐藏算法实现置乱后的数字媒体视频图像信息隐藏。实验结果表明,所提方法能提升数字媒体视频图像的峰值信噪比,隐藏信息嵌入、提取耗时较短,信息提取精度较高。 展开更多
关键词 参考帧 信息隐藏 NLEMD算法 置乱变换
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
12
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
原文传递
基于IDBO-TVFEMD与改进小波阈值函数的滚动轴承复合故障诊断方法
13
作者 别锋锋 张雨婷 +4 位作者 李倩倩 丁学平 彭光成 戴雨萱 张瀚阳 《机械强度》 北大核心 2025年第10期51-62,共12页
针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD... 针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD)与新型小波阈值函数去噪相结合的故障诊断方法。首先,运用IDBO对TVFEMD中B样条阶数和带宽阈值ξ进行迭代寻优,得出最佳参数组合,然后,对原始信号进行TVFEMD,得到各本征模态函数(Intrinsic Mode Function,IMF)分量,通过相关系数准则去除其中的无关分量,重构新信号。随后,运用改进的小波阈值函数对新信号进行二次去噪处理。最后,对处理完的信号进行包络谱分析,提取其故障特征频率。通过仿真模拟信号与故障模拟试验分析研究,实现IDBOTVFEMD与改进小波阈值函数相结合的故障诊断方法和经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、完全集合经验模态分解去噪(Complete EEMD with Adaptive Noise,CEEMDAN)方法的对比,研究结果表明,提出的算法模型具备更好的诊断效果。 展开更多
关键词 滚动轴承 时变滤波经验模态分解 蜣螂优化器算法 小波阈值函数
在线阅读 下载PDF
基于SSA优化的Transformer-BiGRU短期风电功率预测
14
作者 包广斌 杨龙龙 +1 位作者 范超林 李焕 《电子测量技术》 北大核心 2025年第13期139-147,共9页
为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构... 为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构建了一个高效的组合模型。针对Transformer-BiGRU模型超参数优化困难的问题,引入SSA麻雀搜索算法对超参数进行优化,进一步提升预测精度。最后,以龙源电力风电预测数据集为例,通过对比实验和消融实验验证了该模型优于其他传统模型和模型中各组件的有效性,实验结果表明该方法的R 2达到了0.9810。 展开更多
关键词 风电预测 麻雀搜索算法 自适应噪声完备经验模态分解 双向门控循坏单元 自注意力机制
原文传递
基于STSV-CNN-BiLSTM的短期光伏功率预测
15
作者 王泰华 郑文爽 《湖南大学学报(自然科学版)》 北大核心 2025年第10期193-204,共12页
针对光伏发电功率的高波动性导致预测模型精度不足的问题,提出一种新型短期光伏功率预测模型,该模型融合鹭鹰优化算法双分解(secretary bird optimization algorithm double decomposition,STSV)、卷积神经网络(convolutional neural ne... 针对光伏发电功率的高波动性导致预测模型精度不足的问题,提出一种新型短期光伏功率预测模型,该模型融合鹭鹰优化算法双分解(secretary bird optimization algorithm double decomposition,STSV)、卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络.利用皮尔逊相关系数法识别影响光伏发电功率的关键气象特征,采用鹭鹰优化算法对时变滤波经验模态分解参数进行优化.基于样本熵的复杂度评估和K-means聚类方法,将分解得到的模态重构为高频、中频和低频项,并对高频项进行变分模态分解以进一步降低波动性.构建CNN-BiLSTM模型以挖掘光伏功率与气象因素之间的内在联系,通过叠加各分量的预测结果来获得短期光伏功率预测.以江苏某光伏电站的实际数据为例进行仿真,结果表明,本模型在均方根误差、平均绝对误差和平均绝对百分比误差方面相较于其他模型分别降低35.6%、32.3%和29.6%,显著提升了预测的准确性. 展开更多
关键词 鹭鹰优化算法 时变滤波经验模态分解 双向长短期记忆神经网络 变分模态分解
在线阅读 下载PDF
基于改进CEEMD算法与优化LSTM的光伏功率预测
16
作者 许爱华 贾皓天 +1 位作者 王智煜 袁文俊 《吉林大学学报(信息科学版)》 2025年第2期451-460,共10页
为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memor... 为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memory network)结合的光伏功率预测方法。首先,使用CEEMD算法分解光伏功率时序,建立分解功率分量与环境因素的Pearson相关系数矩阵,每个分解功率分量选取3个关键因素作为后续预测的输入;其次,利用改进麻雀群搜索算法(ISSA:Improved Sparrow Search Algorithm)优化LSTM网络,建立ISSA-LSTM算法各光伏功率分量预测模型;然后,将各个分解模态的预测结果叠加重构;最后,结合南方某地光伏电站发电功率实测数据对所提方法进行验证,结果验证了所提方法的有效性与优越性。 展开更多
关键词 光伏功率预测 CEEMD算法 Pearson相关矩阵 ISSA-LSTM算法
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法 被引量:1
17
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
原文传递
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:2
18
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习机 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于改进经验小波变换的永磁同步电机故障诊断策略 被引量:3
19
作者 钱轶群 张孜乐 +3 位作者 杨依林 张宇磊 于天佑 周荔丹 《电机与控制应用》 2025年第1期12-21,共10页
【目的】永磁同步电机(PMSM)因其功率因数高、结构简单和动态性能好等优势在风力发电、电动汽车领域得到广泛应用。然而,PMSM在运行过程中由于驱动器损坏、定子绕组接线松动等原因可能会导致缺相故障,PMSM缺相运行时会产生噪声和振动,... 【目的】永磁同步电机(PMSM)因其功率因数高、结构简单和动态性能好等优势在风力发电、电动汽车领域得到广泛应用。然而,PMSM在运行过程中由于驱动器损坏、定子绕组接线松动等原因可能会导致缺相故障,PMSM缺相运行时会产生噪声和振动,导致输出功率降低,并且长时间缺相运行会损坏电气设备,因此对其进行准确的故障诊断对于保障设备的正常运行至关重要。【方法】本文提出了一种基于改进经验小波变换(IEWT)和分类提升(CatBoost)算法的故障诊断策略,并将其应用于六相PMSM缺相故障诊断。首先,介绍了IEWT算法的基本原理,IEWT算法在Welch功率谱曲线上进行频谱分割,相较于经验小波变换(EWT)算法,能有效抑制模态混叠;然后,对PMSM故障信号进行IEWT分解得到各个模态分量,利用各个模态的能量矩表征故障信号,构建故障分类数据集;最后,基于算数优化算法,取数据集的80%作为训练集对CatBoost算法进行超参数调优,选择合适的超参数构建CatBoost故障分类模型,并与其他传统分类模型进行对比。【结果】试验结果表明,本文所提基于IEWT和CatBoost算法的故障诊断策略有效抑制了传统EWT算法中因主频附近旁瓣过大导致的错误分段现象,提高了故障分类的准确率。与传统分类模型相比,CatBoost多分类模型能够更加准确地识别故障类别,且在每种故障类别上的分类性能表现均衡,泛化能力更强,在不同的故障工况下均有良好表现。【结论】试验结果验证了本文所提故障诊断策略在六相PMSM缺相故障诊断上的可行性和有效性,为后续六相PMSM容错控制以及综合故障检测技术提供了支撑。 展开更多
关键词 缺相故障 故障诊断 改进经验小波变换 CatBoost算法
在线阅读 下载PDF
基于进化算法与经验规则融合的源-网-储协同规划高效求解
20
作者 张觊凡 张恒旭 施啸寒 《电力系统自动化》 北大核心 2025年第16期62-74,共13页
源-网-储协同规划需同时兼顾多个主体,且因其高维度与强非线性特征,求解耗时长,限制了实际应用。为此,提出了一种融合进化算法与经验规则的高效求解方法,以综合利用进化算法的强寻优能力与经验规则的收敛加速特性,显著提升求解效率。首... 源-网-储协同规划需同时兼顾多个主体,且因其高维度与强非线性特征,求解耗时长,限制了实际应用。为此,提出了一种融合进化算法与经验规则的高效求解方法,以综合利用进化算法的强寻优能力与经验规则的收敛加速特性,显著提升求解效率。首先,针对新型电力系统运行方式的多变特性,构建了内嵌时序生产模拟的源-网-储协同规划模型;然后,归纳提炼专家经验,通过模糊推理工具将其规则化;最后,将经验规则融入带精英保留的非支配排序遗传算法,用于优化初始搜索空间和进化方向,从而形成高效求解算法。以中国某省级电网90节点系统的风光电源及储能选址定容为算例,验证了所提方法在求解效率与优化效果上的显著优势。 展开更多
关键词 新型电力系统 源-网-储 协同规划 进化算法 经验规则 非支配排序遗传算法
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部