The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Ti...The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.展开更多
According to the practical problems in eddy current sorting,the method and technology of eddy current hardness sorting based on LeastSquaresSupportVectorMachine(LS-SVM)are proposed based on the Xilinx Artix-7 FPGA in ...According to the practical problems in eddy current sorting,the method and technology of eddy current hardness sorting based on LeastSquaresSupportVectorMachine(LS-SVM)are proposed based on the Xilinx Artix-7 FPGA in this paper.The calculated sorting-hyperplane and designed sorting decision-making machine were used to sort different hardness of the vavles.The experimental results of the vavle sorting show that the sorting success rate can reach 100%under conditions that the number of test vavles is one quarter of the training vavles.The method and technology based on LS-SVM can solve the problems that the impedance feature value is nonlinear with the hardness value and variable sorting interval.It also proved that the LS-SVM algorithm has strong practical value in online eddy current sorting.展开更多
准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Loo...准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Look Once v3,YOLOv3)和SORT(Simple Online and Realtime Tracking,SORT)的云杉数量统计方法。主要内容包括数据采集、YOLOv3检测模型构建、SORT跟踪算法和越线计数算法设计。以平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)和帧率(Frame Rate,FR)为评价指标,该方法对测试集中对应6个不同试验地块的视频内云杉进行数量统计的平均计数准确率MCA为92.30%,平均绝对误差MAE为72,均方根误差RMSE为98.85,帧率FR 11.5帧/s。试验结果表明该方法能够快速准确统计完整地块的云杉数量。相比SSD+SORT算法,该方法在4项评价指标中优势显著,平均计数准确率MCA高12.36个百分点,帧率FR高7.8帧/s,平均绝对误差MAE和均方根误差RMSE分别降低125.83和173.78。对比Faster R-CNN+SORT算法,该方法在保证准确率的基础上更加快速,平均计数准确率MCA仅降低1.33个百分点,但帧率FR提高了10.1帧/s。该研究从无人机航拍视频的角度为解决完整地块的苗木数量统计问题做出了有效探索。展开更多
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ...This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.展开更多
Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore ...Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.展开更多
文摘The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
基金supported by Science and Technology Project of State Grid Corporation Headquarters under Grant 5108-202218280A-2-170-XG(Development and Application of Power Time-Sensitive Network Switching Chip。
文摘The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.
基金supported by a project of the National Natural Science Foundation(No.51865004)the Guizhou Science and Technology Department(No.QKH20161081,No.QKH20192881)
文摘According to the practical problems in eddy current sorting,the method and technology of eddy current hardness sorting based on LeastSquaresSupportVectorMachine(LS-SVM)are proposed based on the Xilinx Artix-7 FPGA in this paper.The calculated sorting-hyperplane and designed sorting decision-making machine were used to sort different hardness of the vavles.The experimental results of the vavle sorting show that the sorting success rate can reach 100%under conditions that the number of test vavles is one quarter of the training vavles.The method and technology based on LS-SVM can solve the problems that the impedance feature value is nonlinear with the hardness value and variable sorting interval.It also proved that the LS-SVM algorithm has strong practical value in online eddy current sorting.
文摘准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Look Once v3,YOLOv3)和SORT(Simple Online and Realtime Tracking,SORT)的云杉数量统计方法。主要内容包括数据采集、YOLOv3检测模型构建、SORT跟踪算法和越线计数算法设计。以平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)和帧率(Frame Rate,FR)为评价指标,该方法对测试集中对应6个不同试验地块的视频内云杉进行数量统计的平均计数准确率MCA为92.30%,平均绝对误差MAE为72,均方根误差RMSE为98.85,帧率FR 11.5帧/s。试验结果表明该方法能够快速准确统计完整地块的云杉数量。相比SSD+SORT算法,该方法在4项评价指标中优势显著,平均计数准确率MCA高12.36个百分点,帧率FR高7.8帧/s,平均绝对误差MAE和均方根误差RMSE分别降低125.83和173.78。对比Faster R-CNN+SORT算法,该方法在保证准确率的基础上更加快速,平均计数准确率MCA仅降低1.33个百分点,但帧率FR提高了10.1帧/s。该研究从无人机航拍视频的角度为解决完整地块的苗木数量统计问题做出了有效探索。
文摘This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.
基金supported by the National Science and Technology Support Program of China(No.2012BAC11B07)the Jiangxi Science and Technology Innovation Base Plan(No.20212BCD42017)。
文摘Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.