We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition o...We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.展开更多
In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different ...In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different solvents of deionized (DI) water, polyethylene glycol (PEG) and ethylene glycol (EG) to form different solutions which were followed by adjusting pH from the traditional values to 7.0 and 10.0 with 1 mol.L-1 sodium hydroxide (NaOH). Subsequently, the solutions were processed by 270-W microwave-hydrother- mal/solvothermal method. Phase, morphology, vibrational modes and photonic properties were fully characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrophotometry, ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy. The as-synthe-sized products were pure cerium molybdenum oxide (Ce2(MoO4)3) of nanoparticles clustered together as nano- plates in DI water and PEG solvents, and of spindle-like nanoparticles in EG solvent, including the presence of Ce-O-H mode and MoO4 units. The results show that direct energy gaps of the first two have the same value of 2.30 eV, and that of the last is 2.80 eV, including their blue emission at the same wavelength of 488 nm.展开更多
An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by cha...An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by changing the ratio of the conditioning solvent(water-ethylene glycol solution)and the order of material addition.Ethylene glycol(EG)exerts a considerable influence on synthesizing LiMnPO_(4)/C flake-like nanocrystal,which benefits the extraction/insertion reaction of lithium ions and improves the electrochemical activity and electrochemical performance of LiMnPO_(4)/C material.When the solvent composition is H_(2)O:EG=1:3,exhibiting exceptional charge/discharge performance and rate capability,the specific discharge capacities are 155.8,153.7,148.8,141.4,129.5,and 112.6 mAh g^(−1) at the 0.1,0.2,0.5,1,2,and 5 C rates,respectively.When the charge-discharge rate returns to 0.1 C,the LiMnPO_(4)/C material shows a reversible discharge specific capacity of 153.7 mAh g^(−1).Differential scanning calorimetry(DSC)tests verify that the thermodynamic stability of the prepared LiMnPO_(4)/C(LMP)and commercial LiFePO_(4)(LFP)materials is better than that of commercial nickel-cobalt-aluminum(NCA)ternary materials.These prepared LiMnPO_(4)/C composites have high electrochemical capacity and cycle stability.展开更多
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport...A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.展开更多
Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served...Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served as a reducing agent as well as a solvent.X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared copper nanowires.The as-prepared copper nanowires are fairly uniform and long.The majority of them are longer than 100μm and some even longer than 200μm.Furthermore,most nanowires are quite straight.In addition, The mechanism of the growth process of copper nanowires was discussed.展开更多
In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the pr...In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the prepared catalyst fo r CO oxidation were investigated.The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction(XRD),Raman spectroscopy,N_(2)physical adsorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),X-ray photoelectron spectroscopy(XPS),temperature-programmed desorption analysis of CO(CO-TPD),in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs),and temperature-programmed reduction with H_(2)(H_(2)-TPR).The results show that the CuO-CeO_(2)catalyst prepared with copper acetate as precursor(CC-A) exhibits the best catalytic activity for CO oxidation at low temperatures,with T50and T90values of 62 and 78℃ respectively,which is mainly attributed to its large specific surface area,pore volume,CO adsorption capacity,and large amount and strong reactivity of surface oxygen.However,the CuO-CeO_(2) catalyst prepared with copper nitrate as precursor(CC-N) displays better stability and resistance to water or CO_(2) poisoning than CC-A.展开更多
With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate su...With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.展开更多
Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which i...Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.展开更多
Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time...Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.展开更多
Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal meth...Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal method at 180 ℃ for 12 h.The crystalline phase and morphology of the resultant nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected-area electronic diffraction(SAED) and high-resolution electron microscopy(HRTEM).Interestingly, the sizes and prod length of the samples can be easily tuned by changing the amount of directing agent EG and keeping other reaction conditions unchangeable. On the basis of our experimental outcomes, EG-controlled-nucleation-growth formation mechanism was proposed to correspond for the sea-urchin-like ZnO growth processes. And the photoluminescence (PL) spectra of the as-selected samples were measured at room temperature, 480 nm. presenting two emission peaks centered at - 388 and展开更多
Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray dif...Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.展开更多
A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting ...A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.展开更多
Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),tra...Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),specific surface area testing,X-ray photoelectron spectroscopy(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Cs_(x)WO_(3) and TiO_(2) were uniformly bonded together in the compos-ites.The heterojunction structure was formed.The band gap was reduced from 2.75 to 2.65 eV.The photocatalytic property of Cs_(x)WO_(3)/TiO_(2)was demonstrated by the degradation rates of 20 mg·L^(-1) methylene blue dye,which were 99.7%,91.4%,and 70.7%under irradiation from a 300 W high-pressure mercury lamp,a 500 W xenon lamp,and a 400 W infrared lamp,respectively.After five cycles of photocatalytic degradation,the composite photocatalyst still showed a degradation efficiency of 87.6%.This indicates that Cs_(x)WO_(3)/TiO_(2) has good photocatalytic degradability and cyclic stability.The photocatalytic mechanism of Cs_(x)WO_(3)/TiO_(2)was investigated.The trapping experiments of the active species showed that the main active substances were the empty hole(h+)and hydroxyl radical(·OH).展开更多
To explore the effect of sulfur vacancies in transition metal sulfide on the electrochemical properties of anode materials,the graphene oxide(GO)and CoNi2S4 were used as the raw materials to synthesize the rGO_(10)−Co...To explore the effect of sulfur vacancies in transition metal sulfide on the electrochemical properties of anode materials,the graphene oxide(GO)and CoNi2S4 were used as the raw materials to synthesize the rGO_(10)−CoNi_(2)S_(4−x)composite electrode materials by the solvothermal method.The obtained rGO_(10)−CoNi_(2)S_(4−x)electrode materials with sulfur vacancies consist of nanoflakes and nanorods.The galvanostatic charge−discharge test of the rGO_(10)−CoNi_(2)S_(4−x)electrode materials shows a great specific capacitance of 3050.1 F/g at a current density of 1 A/g.Moreover,the electrode materials still remain rate capability retention of 86.1%when the current density increases from 1 to at 10 A/g.The rGO_(10)−CoNi_(2)S_(4−x)composite containing sulfur vacancies has higher specific capacitance and better rate capability in comparison to the pristine rGO−CoNi2S4 without containing sulfur defects.The optimized rGO_(10)−CoNi_(2)S_(4−x)composite electrode materials with sulfur vacancies exhibit outstanding cycle stability and rate performance.展开更多
This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii...This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii) nano granule. Oleic acid (C18H3402), gluconic acid (C6H1207) and tween 80 (C64H124026) were used as surfactant/capping/reducing agent for the formation of different morphologies of nanoparticles. The as-synthesized ZnO NPs were characterized by different physicochemical techniques such as UV-vis (UV-vis) spectroscopy, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FFIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis and dynamic light scattering (DLS) studies. Further, the antioxidant and antimicrobial activity of these nanostructures was evaluated. The antioxidant activity of these nanostructures was assessed via 2,2-diphenyl,1-1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and H202 free radical scavenging activity. The in vitro antimicrobial activity of the obtained nanostructures was demonstrated against both gram negative (Escherichia coil) and gram positive (Staphylococcus aureus) bacterial genera. This study revealed antioxidant and antimicrobial properties of different structures ofZnO NPs suggesting their biomedical and industrial applications.展开更多
Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction ...Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction solvents at 180℃for 4 hours.The performance of CQDs was characterized by transmission electron microscope(TEM),Fourier infrared spectrometer(FTIR),UV-visible spectrophotometer,and fluorescence spectrophotometer.The results show that the prepared CQDs are wavelength-dependent,and have good hydrophilicity and similar surface compositions.However,there are more carbon and oxygen-containing functional groups on the surface of CQDs prepared with ethanol(CQDs-ET),and the type and number of functional groups will directly affect the fluorescence emission of CQDs.Also,it is found that the luminescence mechanisms of CQDs prepared by this solvothermal method are mainly based on the defect state of the oxygen group surface.And alcohol solvents do not directly participate in the formation of carbon nuclei during the reaction process,but it will affect the number and type of surface groups.Therefore,the influence of surface groups on the CQDs performance is greater than that of carbon nuclei in this experiment.展开更多
A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample ...A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the nanoparticles are coated with oleic acid. In the synthetic process, N2H4·H2O was used as a reducing agent and oleic acid as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.展开更多
Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2...Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.展开更多
In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morpholo...In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.展开更多
Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two em...Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.展开更多
基金Funded by the National Natural Science Foundation of China(No.52072180)the Graduate Research and Innovation Projects of Jiangsu Province(No.KYCX21_3461)。
文摘We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.
基金financially supported by Thailand's Office of the Higher Education Commission through the National Research University Project for Chiang Mai University
文摘In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different solvents of deionized (DI) water, polyethylene glycol (PEG) and ethylene glycol (EG) to form different solutions which were followed by adjusting pH from the traditional values to 7.0 and 10.0 with 1 mol.L-1 sodium hydroxide (NaOH). Subsequently, the solutions were processed by 270-W microwave-hydrother- mal/solvothermal method. Phase, morphology, vibrational modes and photonic properties were fully characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrophotometry, ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy. The as-synthe-sized products were pure cerium molybdenum oxide (Ce2(MoO4)3) of nanoparticles clustered together as nano- plates in DI water and PEG solvents, and of spindle-like nanoparticles in EG solvent, including the presence of Ce-O-H mode and MoO4 units. The results show that direct energy gaps of the first two have the same value of 2.30 eV, and that of the last is 2.80 eV, including their blue emission at the same wavelength of 488 nm.
基金financial support from Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co.,Ltd.,Qingyuan 511517the National Natural Science Foundation of China(No.21776051)+2 种基金the Scientific and Technological Plan of Guangdong(2019B090905007)the Guangzhou University Research Projects(YG2020017)the China Postdoctoral Science Foundation(2020M682662)。
文摘An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by changing the ratio of the conditioning solvent(water-ethylene glycol solution)and the order of material addition.Ethylene glycol(EG)exerts a considerable influence on synthesizing LiMnPO_(4)/C flake-like nanocrystal,which benefits the extraction/insertion reaction of lithium ions and improves the electrochemical activity and electrochemical performance of LiMnPO_(4)/C material.When the solvent composition is H_(2)O:EG=1:3,exhibiting exceptional charge/discharge performance and rate capability,the specific discharge capacities are 155.8,153.7,148.8,141.4,129.5,and 112.6 mAh g^(−1) at the 0.1,0.2,0.5,1,2,and 5 C rates,respectively.When the charge-discharge rate returns to 0.1 C,the LiMnPO_(4)/C material shows a reversible discharge specific capacity of 153.7 mAh g^(−1).Differential scanning calorimetry(DSC)tests verify that the thermodynamic stability of the prepared LiMnPO_(4)/C(LMP)and commercial LiFePO_(4)(LFP)materials is better than that of commercial nickel-cobalt-aluminum(NCA)ternary materials.These prepared LiMnPO_(4)/C composites have high electrochemical capacity and cycle stability.
基金funded by the National Natural Science Foundation of China(No.21776051)the Natural Science Foundations of Guangdong(No.2018A030313423)。
文摘A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.
基金support by Beijing Natural Science Foundation(2062013)Tsinghua Basic Research Foundation(JCpy2005055).
文摘Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served as a reducing agent as well as a solvent.X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared copper nanowires.The as-prepared copper nanowires are fairly uniform and long.The majority of them are longer than 100μm and some even longer than 200μm.Furthermore,most nanowires are quite straight.In addition, The mechanism of the growth process of copper nanowires was discussed.
基金Project supported by the National Natural Science Foundation of China (21273150)。
文摘In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the prepared catalyst fo r CO oxidation were investigated.The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction(XRD),Raman spectroscopy,N_(2)physical adsorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),X-ray photoelectron spectroscopy(XPS),temperature-programmed desorption analysis of CO(CO-TPD),in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs),and temperature-programmed reduction with H_(2)(H_(2)-TPR).The results show that the CuO-CeO_(2)catalyst prepared with copper acetate as precursor(CC-A) exhibits the best catalytic activity for CO oxidation at low temperatures,with T50and T90values of 62 and 78℃ respectively,which is mainly attributed to its large specific surface area,pore volume,CO adsorption capacity,and large amount and strong reactivity of surface oxygen.However,the CuO-CeO_(2) catalyst prepared with copper nitrate as precursor(CC-N) displays better stability and resistance to water or CO_(2) poisoning than CC-A.
基金National Natural Science Foundation of China (50502028, 50336040)The Outstanding Youth Foundation of North-western Polytechnical University
文摘With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.
基金Fund by the Shanghai Municipal Natural Science Foundation(21ZR1473200)the National Natural Science Foundation of China(No.52072391 and 21905293)。
文摘Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.
基金supported by the Research Foundation of Key Young Teacher of Anyang Normal University
文摘Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal method at 180 ℃ for 12 h.The crystalline phase and morphology of the resultant nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected-area electronic diffraction(SAED) and high-resolution electron microscopy(HRTEM).Interestingly, the sizes and prod length of the samples can be easily tuned by changing the amount of directing agent EG and keeping other reaction conditions unchangeable. On the basis of our experimental outcomes, EG-controlled-nucleation-growth formation mechanism was proposed to correspond for the sea-urchin-like ZnO growth processes. And the photoluminescence (PL) spectra of the as-selected samples were measured at room temperature, 480 nm. presenting two emission peaks centered at - 388 and
基金Funded by the 973 Project (No. 2009CB939704)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547)
文摘Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.
文摘A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.
文摘Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),specific surface area testing,X-ray photoelectron spectroscopy(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Cs_(x)WO_(3) and TiO_(2) were uniformly bonded together in the compos-ites.The heterojunction structure was formed.The band gap was reduced from 2.75 to 2.65 eV.The photocatalytic property of Cs_(x)WO_(3)/TiO_(2)was demonstrated by the degradation rates of 20 mg·L^(-1) methylene blue dye,which were 99.7%,91.4%,and 70.7%under irradiation from a 300 W high-pressure mercury lamp,a 500 W xenon lamp,and a 400 W infrared lamp,respectively.After five cycles of photocatalytic degradation,the composite photocatalyst still showed a degradation efficiency of 87.6%.This indicates that Cs_(x)WO_(3)/TiO_(2) has good photocatalytic degradability and cyclic stability.The photocatalytic mechanism of Cs_(x)WO_(3)/TiO_(2)was investigated.The trapping experiments of the active species showed that the main active substances were the empty hole(h+)and hydroxyl radical(·OH).
基金Open Project of Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education),Shanghai Jiao Tong University,China(No.201301)ClassⅢPeak Discipline of Shanghai—Materials Science and Engineering(High-energy Beam Intelligent Processing and Green Manufacturing),China。
文摘To explore the effect of sulfur vacancies in transition metal sulfide on the electrochemical properties of anode materials,the graphene oxide(GO)and CoNi2S4 were used as the raw materials to synthesize the rGO_(10)−CoNi_(2)S_(4−x)composite electrode materials by the solvothermal method.The obtained rGO_(10)−CoNi_(2)S_(4−x)electrode materials with sulfur vacancies consist of nanoflakes and nanorods.The galvanostatic charge−discharge test of the rGO_(10)−CoNi_(2)S_(4−x)electrode materials shows a great specific capacitance of 3050.1 F/g at a current density of 1 A/g.Moreover,the electrode materials still remain rate capability retention of 86.1%when the current density increases from 1 to at 10 A/g.The rGO_(10)−CoNi_(2)S_(4−x)composite containing sulfur vacancies has higher specific capacitance and better rate capability in comparison to the pristine rGO−CoNi2S4 without containing sulfur defects.The optimized rGO_(10)−CoNi_(2)S_(4−x)composite electrode materials with sulfur vacancies exhibit outstanding cycle stability and rate performance.
文摘This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii) nano granule. Oleic acid (C18H3402), gluconic acid (C6H1207) and tween 80 (C64H124026) were used as surfactant/capping/reducing agent for the formation of different morphologies of nanoparticles. The as-synthesized ZnO NPs were characterized by different physicochemical techniques such as UV-vis (UV-vis) spectroscopy, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FFIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis and dynamic light scattering (DLS) studies. Further, the antioxidant and antimicrobial activity of these nanostructures was evaluated. The antioxidant activity of these nanostructures was assessed via 2,2-diphenyl,1-1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and H202 free radical scavenging activity. The in vitro antimicrobial activity of the obtained nanostructures was demonstrated against both gram negative (Escherichia coil) and gram positive (Staphylococcus aureus) bacterial genera. This study revealed antioxidant and antimicrobial properties of different structures ofZnO NPs suggesting their biomedical and industrial applications.
基金Funded by Shanghai Publishing and Printing College(No.ZBKT202004)
文摘Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction solvents at 180℃for 4 hours.The performance of CQDs was characterized by transmission electron microscope(TEM),Fourier infrared spectrometer(FTIR),UV-visible spectrophotometer,and fluorescence spectrophotometer.The results show that the prepared CQDs are wavelength-dependent,and have good hydrophilicity and similar surface compositions.However,there are more carbon and oxygen-containing functional groups on the surface of CQDs prepared with ethanol(CQDs-ET),and the type and number of functional groups will directly affect the fluorescence emission of CQDs.Also,it is found that the luminescence mechanisms of CQDs prepared by this solvothermal method are mainly based on the defect state of the oxygen group surface.And alcohol solvents do not directly participate in the formation of carbon nuclei during the reaction process,but it will affect the number and type of surface groups.Therefore,the influence of surface groups on the CQDs performance is greater than that of carbon nuclei in this experiment.
基金the Research Fund of Shaanxi Key Laboratory(Nos.04JS04 and 05JS50)the Natural Science Foundation of Shaanxi Province, China(No.2005B19)the Significant Special Found of "13115" S & T Innovation Project of Shaanxi Province, China(No.2007ZDKG-61)
文摘A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the nanoparticles are coated with oleic acid. In the synthetic process, N2H4·H2O was used as a reducing agent and oleic acid as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.
基金supported by the Natural Science Foundation of Fujian Province(No.2017J05021)the National Natural Science Foundation of China(No.21201035)Fuzhou university undergraduate research training program in chemistry(HX2018-14)
文摘Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.
文摘In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.
文摘Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.