期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys 被引量:14
1
作者 Zhipeng Wang Qihong Fang +2 位作者 Jia Li Bin Liu Yong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期349-354,共6页
An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of... An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future. 展开更多
关键词 High entropy alloy Solid solution strengthening Least resistance Yield strength Alloying design
原文传递
Determination of large diameter bored pile's effective length based on Mindlin's solution
2
作者 Zhijun Zhou Duanduan Wang +1 位作者 Lipeng Zhang Weisi Ma 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第6期422-428,共7页
The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the differ... The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the different distributions of pile shaft resistance. Primarily, this paper summarizes the conceptualized mode of pile shaft resistance under the circum- stance that the soil surrounding the piles presents different layer distributions. Secondly, based on Mindlin's displacement solution and in consideration of the effect of pile diam- eter, the calculation equation is optimized with the assumption that the pile shaft resis- tance has a parabolic distribution. The influencing factors are analyzed according to the calculation result of effective pile length. Finally, combined with an engineering example, the calculation equation deduced in this paper is analyzed and verified. The result shows that both the Poisson ratio of soil and pile diameter have impacted the effective pile length. Compared with the Poisson ratio of soil, the effect of pile diameter is more significant. If the pile diameter remains the same, the effect of the Poisson ratio of soil to the effective pile length decreases as the ratio of pile elastic modulus and soil share modulus increases. If the Poisson ratio of soil remains the same, the effect of the pile diameter to the effective pile length increases as the ratio of pile elastic modulus and soil share modulus increases. Thus the optimized calculation result of pile effective length under the consideration of pile diameter effect is more close to the actual situation of engineering and reasonably practicable. 展开更多
关键词 Large diameter bored pile Pile shaft resistance Parabolic distribution Mindlin's solution Effect of pile diameter Effective pile length
原文传递
Why do platinum catalysts show diverse electrocatalytic performance?
3
作者 Qiangmin Yu Zhiyuan Zhang +5 位作者 Heming Liu Xin Kang Shiyu Ge Shaohai Li Lin Gan Bilu Liu 《Fundamental Research》 CAS CSCD 2023年第5期804-808,共5页
As one of the best electrocatalysts for the hydrogen evolution reaction,platinum catalysts are a benchmark for the performance evaluation of new catalysts.However,platinum catalysts reported in the literature show div... As one of the best electrocatalysts for the hydrogen evolution reaction,platinum catalysts are a benchmark for the performance evaluation of new catalysts.However,platinum catalysts reported in the literature show diverse electrocatalytic performances,resulting in the lack of a common reference standard.In this study,we investigated several factors that affect the performance of platinum catalysts by performing experimental measurements and data processing.These factors included the solution resistance,electrolyte temperature,loading quantity,catalyst microstructure,and normalization method of the current density.Finally,we recommended criteria for the performance evaluation of electrocatalysts. 展开更多
关键词 PLATINUM ELECTROCATALYST OVERPOTENTIAL solution resistance Loading quantity Microstructure Catalyst area Evaluation criteria
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部