期刊文献+
共找到575篇文章
< 1 2 29 >
每页显示 20 50 100
Rendered image denoising method with filtering guided by lighting information 被引量:1
1
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
Research on Denoising Method of Agricultural Product Terahertz Spectroscopy Based on Adaptive Signal Decomposition
2
作者 WU Jing-zhu LIU Yu-hao +3 位作者 YANG Yi XIE Chuan-luan L Zhong-ming LI Yi-can 《光谱学与光谱分析》 北大核心 2025年第12期3575-3584,共10页
To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explo... To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explores the feasibility of adaptive-signal-decomposition-based denoising methods to improve THz spectral quality.THz time-domain spectroscopy(THz-TDS)combined with an attenuated total reflection(ATR)accessory was used to collect THz absorbance spectra from 48 peanut samples.Taking the quantitative prediction model of peanut moisture content based on THz-ATR as an example,wavelet transform(WT),empirical mode decomposition(EMD),local mean decomposition(LMD),and its improved methods-segmented local mean decomposition(SLMD)and piecewise mirror extension local mean decomposition(PME-LMD)-were employed for spectral denoising.The applicability of different denoising methods was evaluated using a support vector regression(SVR)model.Experimental results show that the peanut moisture content prediction model constructed after PME-LMD denoising achieved the best performance,with a root mean square error(RMSE),coefficient of determination(R^(2)),and mean absolute percentage error(MAPE)of 0.010,0.912,and 0.040,respectively.Compared with traditional methods,PME-LMD significantly improved spectral quality and model prediction performance.The PME-LMD denoising strategy proposed in this study effectively suppresses non-uniform noise interference in THz spectral signals,providing an efficient and accurate preprocessing method for THz spectral analysis of agricultural products.This research provides theoretical support and technical guidance for the application of THz technology for detecting agricultural product quality. 展开更多
关键词 Terahertz spectroscopy denoising method Agricultural products Support vector regression Piecewise mirror extension local mean decomposition
在线阅读 下载PDF
Low-illumination image denoising method for wide-area search of nighttime sea surface 被引量:4
3
作者 SONG Ming-zhu QU Hong-song +2 位作者 ZHANG Gui-xiang TAO Shu-ping JIN Guang 《Optoelectronics Letters》 EI 2018年第3期226-231,共6页
In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface,a model based on total variation(TV)and split Bregman is proposed in this paper.A fidelity term based ... In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface,a model based on total variation(TV)and split Bregman is proposed in this paper.A fidelity term based on L1 norm and a fidelity term based on L2 norm are designed considering the difference between various noise types,and the regularization mixed first-order TV and second-order TV are designed to balance the influence of details information such as texture and edge for sea surface image.The final detection result is obtained by using the high-frequency component solved from L1 norm and the low-frequency component solved from L2 norm through wavelet transform.The experimental results show that the proposed denoising model has perfect denoising performance for artificially degraded and low-illumination images,and the result of image quality assessment index for the denoising image is superior to that of the contrastive models. 展开更多
关键词 Low-illumination image denoising method wide-area SEARCH of NIGHTTIME sea surface
原文传递
Research on Comparison and Evaluation Studies of Several Smoothing Denoising Method Based on γ-ray Spectrum Detector 被引量:1
4
作者 Jian-Feng He Fang Fang +2 位作者 Yao-Zong Yang Yue-Shun He Bin Tang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期7-11,共5页
The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothi... The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall. 展开更多
关键词 T-spectrum data-processing smoothing denoising method comparison and evaluation matlabprogramming
在线阅读 下载PDF
Controlled-source electromagnetic data denoising based on improved vision transformer
5
作者 Xiao Guo-zhen Li Guang +2 位作者 Zhang Kun Wang Xin Li-Jin 《Applied Geophysics》 2025年第4期1058-1077,1494,共21页
Controlled-source electromagnetic method(CSEM)has been widely applied in engineering and environmental surveys,resource and energy exploration,as well as geological disaster detection.However,due to the increasingly h... Controlled-source electromagnetic method(CSEM)has been widely applied in engineering and environmental surveys,resource and energy exploration,as well as geological disaster detection.However,due to the increasingly human noises,CSEM data are inevitably subjected to electromagnetic noise,which severely affect the detection results.To address this issue,we propose an improved vision transformer(IVIT)deep learning denoising network to suppress cultural noise,and use wide-field electromagnetic(WFEM,a kind of CSEM)data as an example to validate the effectiveness and superiority.First,typical high-quality CSEM data are selected and a series of simulated noises are added to create a sample library.Second,the well-prepared sample library is used to train the IVIT network.Finally,the well-trained model is employed to perform a one-step denoising operation on the noisy CSEM data to obtain high-quality data.Comparative experiments are conducted with denoising convolutional neural network(DnCNN),residual networks(ResNet),residual DnCNN(ResDnCNN),ResDnCNN combined with shift-invariant sparse coding(ResDnCNN-SISC),U-Net networks,and long short-term memory networks(LSTM).The proposed method effectively removes white noise,pulse noise,and square wave noise,and improves the signal-to-noise ratio(SNR)by approximately 20 dB.Compared with the competitive methods,it has obvious advantages.Analysis of CSEM data from Sichuan Province,China,shows that the data processed by the proposed method results in smoother apparent resistivity curves.In summary,the proposed denoising method can be used to suppress the strong noise of CSEM data,which is helpful for subsequent research of inversion. 展开更多
关键词 Controlled-source electromagnetic method(CSEM) signal denoising visual transformer(VIT) deep learning
在线阅读 下载PDF
Study of denoising method for nonhyperbolic prestack seismic reflection data
6
作者 GOU Fuyan LIU Yang ZHANG Peng 《Global Geology》 2019年第1期62-66,共5页
Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like... Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation. 展开更多
关键词 VD-seislet transform denoising SELF-ADAPTIVE threshold method H-curve
在线阅读 下载PDF
TV/L2-based image denoisingalgorithm with automaticparameter selection 被引量:1
7
作者 王保宪 唐林波 +2 位作者 赵保军 邓宸伟 杨静林 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期375-382,共8页
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ... In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity 展开更多
关键词 image denoising parameter selection fast gradient-based method discrepancy princi-ple
在线阅读 下载PDF
A Second-Order Image Denoising Model for Contrast Preservation
8
作者 Wei Zhu 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1406-1427,共22页
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second... In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model. 展开更多
关键词 Image denoising Variational model Image contrast Augmented Lagrangian method(ALM)
在线阅读 下载PDF
A Double-Weighted Deterministic Extreme Learning Machine Based on Sparse Denoising Autoencoder and Its Applications
9
作者 Liang Luo Bolin Liao +1 位作者 Cheng Hua Rongbo Lu 《Journal of Computer and Communications》 2022年第11期138-153,共16页
Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe... Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm. 展开更多
关键词 Extreme Learning Machine Sparse denoising Autoencoder Pseudo-Inverse method Miao Character Recognition
在线阅读 下载PDF
基于PCM法的管道腐蚀检测研究
10
作者 胡瑞兵 孙宝财 +1 位作者 荆炀 王建儒 《粘接》 2026年第1期266-269,共4页
为提高管道腐蚀检测准确性,设计了一套基于PCM法的管道腐蚀检测系统。系统通过采用小波去噪对PCM法检测的管道腐蚀信号进行去噪处理,并采用正弦电流激励技术对管道腐蚀破损和剥离两种缺陷状态进行识别,然后利用改进PCM法计算管道防腐层... 为提高管道腐蚀检测准确性,设计了一套基于PCM法的管道腐蚀检测系统。系统通过采用小波去噪对PCM法检测的管道腐蚀信号进行去噪处理,并采用正弦电流激励技术对管道腐蚀破损和剥离两种缺陷状态进行识别,然后利用改进PCM法计算管道防腐层的绝缘电阻率,并根据计算结果判断管道防腐层等级,实现了管道腐蚀检测。结果表明,该系统发射器可稳定发射不同频率和大小的电流,接收器可准确检测管道电流变化,电流相对误差小于2%,满足精度要求,提高了管道腐蚀检测的准确性,且具有一定的实际应用价值。 展开更多
关键词 PCM法 管道腐蚀 小波去噪 正弦电流激励技术
在线阅读 下载PDF
An Improved Mumford-Shah Model and Its Applications to Image Processing with the Piecewise Constant Level Set Method 被引量:1
11
作者 SONG Jin-Ping LI Shuai-Jie 《自动化学报》 EI CSCD 北大核心 2007年第12期1259-1262,共4页
为快分割并且降噪,提高 penalization 学期的古典 Mumford-Shah (MS ) 模型需要,即增加 penalization 参数,它导致目标的渐渐的消失。在这份报纸,我们建议一个改进 Mumford-Shah (IMS ) 模型避免现象,并且采用 piecewise 常数水平... 为快分割并且降噪,提高 penalization 学期的古典 Mumford-Shah (MS ) 模型需要,即增加 penalization 参数,它导致目标的渐渐的消失。在这份报纸,我们建议一个改进 Mumford-Shah (IMS ) 模型避免现象,并且采用 piecewise 常数水平集合方法(PCLSM ) 和坡度降下方法解决最小化问题。数字实验被给显示出新模型和算法的效率和优点。 展开更多
关键词 分段持续水平集方法 分割 降噪 经典MS模型 最小化 算法
在线阅读 下载PDF
A New Extrapolation Economy Cascadic Multigrid Method for Image Restoration Problems
12
作者 Zhaoteng Chu Ziqi Yan Chenliang Li 《American Journal of Computational Mathematics》 2023年第2期323-341,共19页
In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonl... In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality. 展开更多
关键词 Extrapolation Economy Cascadic Multigrid method New Extrapolation Formula Edge Preserving denoising Operator Local Smoothing Operator
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法 被引量:1
13
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
原文传递
基于偏微分方程的盲去模糊超分辨率重建算法及实验 被引量:1
14
作者 徐文达 温馨 +1 位作者 毛忠旋 邹永魁 《吉林大学学报(理学版)》 北大核心 2025年第1期35-40,共6页
提出一种基于偏微分方程的图像盲去模糊超分辨率重建算法,旨在未知模糊核的情况下,将含噪声的低分辨率模糊图像重建为清晰的高分辨率图像.首先,针对图像退化过程构建变分问题,并借助变分方法推导出偏微分方程模型.其次,结合交替方向法... 提出一种基于偏微分方程的图像盲去模糊超分辨率重建算法,旨在未知模糊核的情况下,将含噪声的低分辨率模糊图像重建为清晰的高分辨率图像.首先,针对图像退化过程构建变分问题,并借助变分方法推导出偏微分方程模型.其次,结合交替方向法和数值差分方法,通过设计时空全离散数值格式求解未知的模糊核和清晰的图像.再次,通过一系列数值实验,分析参数选择对图像重建效果的影响,确定合适的参数设置.最后,针对若干遥感图像进行实验,实验结果证明了所给模型的有效性与可靠性. 展开更多
关键词 偏微分方程 盲去噪去模糊 超分辨率重建 变分方法
在线阅读 下载PDF
基于Akima插值的带式输送机物料流量激光检测方法
15
作者 刘毅 刘毅 +1 位作者 孙静 赵子贤 《工矿自动化》 北大核心 2025年第5期57-63,共7页
针对现有基于激光雷达的带式输送机物料流量检测方法易受异常点云数据影响、难以准确描述物料表面状态的问题,提出一种基于Akima插值的带式输送机物料流量激光检测方法。通过激光雷达获取输送带点云轨迹,并进行直通滤波和离群点去噪处理... 针对现有基于激光雷达的带式输送机物料流量检测方法易受异常点云数据影响、难以准确描述物料表面状态的问题,提出一种基于Akima插值的带式输送机物料流量激光检测方法。通过激光雷达获取输送带点云轨迹,并进行直通滤波和离群点去噪处理;采用Akima插值法获取带式输送机上物料的截面积,结合输送带运行速度和激光雷达扫描频率,计算单个扫描周期内的物料体积;通过对任意时间段的测量数据进行积分,获得该时间段内的物料总体积。仿真结果表明,对激光雷达输出的点云进行离群点去噪处理,能够有效识别异常的点云数据并对其进行修正,修正后的计算结果更接近真实的物料截面积。分别采用扇形−三角形计算法和Akima插值法对不同体积和带速的情况进行对比实验,结果表明,扇形−三角形计算法的精度较低且不稳定,而Akima插值法的精度全部达90%以上,可靠性高,可以准确得到输送物料的瞬时流量和总流量。 展开更多
关键词 带式输送机 流量检测 激光雷达 Akima插值法 离群点去噪
在线阅读 下载PDF
基于小波变换的微动勘探频散去噪分析研究
16
作者 徐敏 张宗楼 +2 位作者 毕爽爽 鲍现奎 朱丹华 《工程地球物理学报》 2025年第2期277-284,共8页
随着地球物理勘探技术的进步,被动源面波已成为获取地下介质横波速度参数的重要工具。然而,城市环境中的被动源面波数据常常受到噪声干扰,这对空间自相关法的应用提出了挑战。为了解决这一问题,本研究引入了小波变换去噪技术,通过多尺... 随着地球物理勘探技术的进步,被动源面波已成为获取地下介质横波速度参数的重要工具。然而,城市环境中的被动源面波数据常常受到噪声干扰,这对空间自相关法的应用提出了挑战。为了解决这一问题,本研究引入了小波变换去噪技术,通过多尺度分解与阈值处理,有效去除了自相关系数中的噪声成分。在数值模拟部分,对理论空间自相关系数即贝塞尔函数进行了加噪处理,并评估了10种不同类型的小波基在降噪分析中的表现。模拟结果显示,cofi5小波基在贝塞尔函数的噪声压制方面表现优异。针对杭州市城南路采集的实测数据,降噪处理后,面波频散能量在2~16 Hz频带范围内的收敛度得到了显著提升。实验结果表明,小波变换去噪技术显著提高了被动源面波空间自相关法的有效频谱范围和准确性,为被动源探测技术的发展提供了强有力的支持。 展开更多
关键词 被动源面波 空间自相关法 小波变换 去噪
在线阅读 下载PDF
高维局部数据体中线性信号预测基本理论与方法
17
作者 王华忠 项健 +2 位作者 张力起 欧阳志远 宋家文 《石油物探》 北大核心 2025年第1期1-14,共14页
首先,提出了若干线性结构(可以视为局部平面波)飘在具有不同概率分布特征的、实测的局部高维数据体中是地震信号处理的核心概念模式,认为对局部高维数据体中的线性结构进行建模及最佳预测,从而解决去噪、数据规则化和解混叠(Deblending... 首先,提出了若干线性结构(可以视为局部平面波)飘在具有不同概率分布特征的、实测的局部高维数据体中是地震信号处理的核心概念模式,认为对局部高维数据体中的线性结构进行建模及最佳预测,从而解决去噪、数据规则化和解混叠(Deblending)等问题是地震数据处理中的基本环节;认为对线性信号进行最佳的建模和预测包括模型驱动和数据驱动的方法。前者是由预先选定的局部平面波基函数的线性叠加表示局部高维数据体中包含的信号;后者由数据矩阵(张量)分解的方法推断局部高维数据体中包含的线性结构。然后,全面分析了频率-空间域高维Wiener滤波方法、自相关矩阵及Hankel矩阵正交分解方法(SSA方法)、高维线性Radon变换方法(高维Beamforming方法)和张量分解方法的基本理论,为进行局部高维数据体中线性信号预测及各种应用奠定了理论基础。最后,指出山前带及其他复杂地表探区实际数据中的相干噪声和非相干噪声往往不符合线性信号建模及预测的理论假设条件,因而必须发展非线性去噪方法。 展开更多
关键词 局部高维数据体 线性结构 最佳预测 高维Wiener滤波方法 高维SSA方法 高维线性Radon变换方法 张量分解方法 去噪与数据规则化
在线阅读 下载PDF
改进小波阈值算法在井地电磁法物理模拟信号处理中的应用
18
作者 刘永雷 彭媛慧 +4 位作者 曹辉 程明华 段野 米小利 杨云见 《物探化探计算技术》 2025年第5期707-716,共10页
井地电磁法在深地勘探、油气藏圈定、储层分布研究及油井注水或注浆动态监测中具有重要应用潜力,但野外采集的井地电磁数据常受随机噪声干扰,影响数据解释。针对传统小波去噪方法的不足,笔者提出了一种基于广义交叉验证(GCV)准则和灰狼... 井地电磁法在深地勘探、油气藏圈定、储层分布研究及油井注水或注浆动态监测中具有重要应用潜力,但野外采集的井地电磁数据常受随机噪声干扰,影响数据解释。针对传统小波去噪方法的不足,笔者提出了一种基于广义交叉验证(GCV)准则和灰狼优化(GWO)的组合小波去噪方法。通过仿真实验和加入50 Hz工频噪声的物理模拟数据验证,该方法显著提高了信噪比,降低了均方误差,有效去噪并保留了信号特征,为井地电磁法数据解释的准确性和可靠性提供了支持。. 展开更多
关键词 井地电磁法 物理模拟实验数据 广义交叉验证 灰狼优化算法 小波阈值去噪
在线阅读 下载PDF
基于ICEEMDAN-改进小波阈值法的爆破振动信号消噪分析 被引量:1
19
作者 张文涛 汪海波 +3 位作者 高朋飞 王梦想 程兵 宗琦 《工程爆破》 北大核心 2025年第2期157-168,共12页
为了更好地消除噪声成分对爆破振动信号的影响,构建了ICEEMDAN算法联合改进小波阈值法的消噪方法。首先使用ICEEMDAN算法对实测信号分解得到一系列IMF分量,然后通过互相关分析、频谱分析和交叉小波相干分析确定高频噪声分量、含噪分量... 为了更好地消除噪声成分对爆破振动信号的影响,构建了ICEEMDAN算法联合改进小波阈值法的消噪方法。首先使用ICEEMDAN算法对实测信号分解得到一系列IMF分量,然后通过互相关分析、频谱分析和交叉小波相干分析确定高频噪声分量、含噪分量、趋势项分量,利用改进的小波阈值法提取含噪分量中的真实信息,剔除噪声成分后将剩余分量相加重构信号。通过信号重构前后的波形、三维时频谱对消噪效果进行评价,并采用信噪比、均方根误差等指标对6种消噪方法的降噪效果进行对比。结果表明:ICEEMDAN-改进小波阈值法能在保存爆破振动信号真实信息的前提下精准消除噪声成分;与其他5种方法相比,该方法消噪重构后信号的信噪比最高、均方根误差最小,分别为28.73 dB、0.0022,在时域和频域均表现出较好的消噪能力。 展开更多
关键词 爆破振动信号 消噪 ICEEMDAN 小波阈值法
在线阅读 下载PDF
分布式声波传感数据去噪方法及应用研究进展 被引量:1
20
作者 孙家鑫 李静 +2 位作者 刘辉 张凯文 张志宇 《地球物理学进展》 北大核心 2025年第3期1279-1295,共17页
近年来,分布式光纤声波传感(Distributed Acoustic Sensing, DAS)技术因其高分辨率、宽频带测量、实时监测等优点,在地球内部结构研究、地下空间探测、微震监测等领域取得广泛应用.由于DAS受光学系统、解调算法、光缆与地层耦合、横纵... 近年来,分布式光纤声波传感(Distributed Acoustic Sensing, DAS)技术因其高分辨率、宽频带测量、实时监测等优点,在地球内部结构研究、地下空间探测、微震监测等领域取得广泛应用.由于DAS受光学系统、解调算法、光缆与地层耦合、横纵波等多种因素影响,其噪声类型和复杂程度高于传统检波器数据.相同噪声水平下数据信噪比比常规地震检波器记录低.因此,对DAS数据去噪方法提出了更高的要求.近年来,国内外学者针对不同类型DAS数据开展了大量去噪和弱信号增强方法研究,本文主要介绍和讨论了在勘探地震和天然地震学领域DAS数据采用传统物理方法和深度学习方法去噪的最新研究进展,分析总结了不同去噪方法的适用条件和优缺点.在此基础上,讨论了当前DAS数据去噪所面临的挑战,并对未来的发展趋势进行展望. 展开更多
关键词 分布式声波传感(DAS) 信号去噪 弱信号增强 物理方法 深度学习方法
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部