期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
Application of soft sensor modeling based on SSA-CNN-LSTM in solar thermal power collection subsystem
1
作者 LU Xiaojuan ZHANG Yaohui +2 位作者 FAN Duojin KONG Linggang ZHANG Zhiyong 《Journal of Measurement Science and Instrumentation》 2025年第4期505-514,共10页
To address the stochasticity and nonlinearity of solar collector power systems,a soft sensor prediction model with a hybrid convolutional neural network(CNN)and long short-term memory network(LSTM)was constructed,and ... To address the stochasticity and nonlinearity of solar collector power systems,a soft sensor prediction model with a hybrid convolutional neural network(CNN)and long short-term memory network(LSTM)was constructed,and the hyperparameter optimization of the hybrid neural network(CNN-LSTM)was carried out by using the sparrow search algorithm(SSA).The model utilized the powerful feature extraction and non-linear mapping capabilities of deep learning to effectively handle the complex relationship between input and target variables.The batch normalization technique was used to speed up the training and improve the stability of the soft-sensing model,and the random discard technique was used to prevent the soft-sensing model from overfitting.Finally,the mean absolute error(MAE)was used to assess the accuracy of the soft sensor model predictions.This study compared the proposed model with soft sensor prediction models like Bp,Elman,CNN,LSTM,and CNN-LSTM,using dynamic thermal performance data from the solar collector field of the molten salt linear Fresnel photovoltaic demonstration power plant.The deep learning-based soft sensor model outperformed the other models according to the experimental data.Its coefficients of determination(namely R^(2))are higher by 6.35%,8.42%,5.69%,6.90%,and 3.67%,respectively.The accuracy and robustness have been significantly improved. 展开更多
关键词 soft sensor modeling linear Fresnel collector subsystem collector field outlet temperature deep learning sparrow search algorithm
在线阅读 下载PDF
Modeling and identification for soft sensor systems based on the separation of multi-dynamic and static characteristics 被引量:1
2
作者 Pengfei Cao Xionglin Luo Xiaohong Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期137-143,共7页
Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and sof... Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and soft sensor systems exhibit multi-dynamic characteristics. Thus, the first contribution is improving the model in the previous study with multi-time-constant. The characteristics-separation-based model will be identified in substep way,and the stochastic Newton recursive(SNR) algorithm is adopted. Considering the dual-rate characteristics of soft sensor systems, the proposed model cannot be identified directly. Thus, two auxiliary models are first proposed to offer the intersample estimations at each update period, based on which the improved algorithm(DAM-SNR) is derived. These two auxiliary models function in switching mechanism which has been illustrated in detail. This algorithm serves for the identification of the proposed model together with the SNR algorithm, and the identification procedure is then presented. Finally, the laboratorial case confirms the effectiveness of the proposed soft sensor model and the algorithms. 展开更多
关键词 soft sensor modeling Characteristics separation System identification Double auxiliary models
在线阅读 下载PDF
Method of Soft-Sensor Modeling for Fermentation Process Based on Geometric Support Vector Regression 被引量:1
3
作者 吴佳欢 王晓琨 +2 位作者 王建林 赵利强 于涛 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期1-6,共6页
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve... The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency. 展开更多
关键词 fermentation process soft-sensor modeling geometric SVR swarm energy conservation particle swarm optimization (SEC-PSO)
在线阅读 下载PDF
Component Content Soft-Sensor Based on Hybrid Models in Countercurrent Rare Earth Extraction Process 被引量:3
4
作者 杨辉 王欣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期86-91,共6页
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co... In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction. 展开更多
关键词 countercurrent extraction soft-sensor equilibrium calculation model RBF neural networks hierarchical genetic algorithms rare earths
在线阅读 下载PDF
Feasibility analysis and online adjustment of constraints in model predictive control integrated with soft sensor
5
作者 Pengfei Cao Xionglin Luo Xiaohong Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1230-1237,共8页
Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to g... Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to guarantee that the optimal control law exists. For MPC integrated with soft sensor, considering the soft constraints for critical variables additionally makes it more complicated and difficult for feasibility analysis and constraint adjustment. Therefore, the main contributions are that a linear programming approach is proposed for feasibility analysis, and the corresponding constraint adjustment method and procedure are given as well. The feasibility analysis gives considerations to the manipulated, secondary and critical variables, and the increment of manipulated variables as well. The feasibility analysis and the constraint adjustment are conducted in the entire control process and guarantee the existence of optimal control. In final, a simulation case confirms the contributions in this paper. 展开更多
关键词 soft sensor model predictive control Variable constraints Feasibility analysis
在线阅读 下载PDF
Forward heuristic breadth-first reasoning based on rule match for biomass hybrid soft-sensor modeling in fermentation process
6
作者 安莉 王建林 《Journal of Beijing Institute of Technology》 EI CAS 2012年第1期128-133,共6页
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho... Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process. 展开更多
关键词 fermentation process BIOMASS soft-sensor modeling rule match
在线阅读 下载PDF
SOFT SENSING MODEL BASED ON SUPPORT VECTOR MACHINE AND ITS APPLICATION 被引量:3
7
作者 YanWeiwu ShaoHuihe WangXiaofan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期55-58,共4页
Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s... Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications. 展开更多
关键词 soft sensor soft sensing modelING Support vector machine
在线阅读 下载PDF
Neural Networks Based Component Content Soft-Sensor in Countercurrent Rare-Earth Extraction 被引量:2
8
作者 杨辉 谭明皓 柴天佑 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期691-696,共6页
The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rar... The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor). 展开更多
关键词 countercurrent extraction first principle model soft-sensor model neural networks rare earths
在线阅读 下载PDF
Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process 被引量:13
9
作者 YANG Hui CHAI Tian-You 《自动化学报》 EI CSCD 北大核心 2006年第4期489-495,共7页
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err... Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness. 展开更多
关键词 RARE-EARTH countercurrent extraction soft-sensor equilibrium calculation model neural networks
在线阅读 下载PDF
Software sensor for slab reheating furnace 被引量:2
10
作者 ZhihuaXiong GuohongHuang HuiheShao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期123-127,共5页
It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is propos... It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter esti- mation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580 reheating furnace in Baosteel Corporation (Group). 展开更多
关键词 Gaussian processes expectation maximization multiple models soft sensor reheating furnace
在线阅读 下载PDF
Predictive Model for Cement Clinker Quality Parameters 被引量:1
11
作者 Nsidibe-Obong Ekpe Moses Sunday Boladale Alabi 《Journal of Materials Science and Chemical Engineering》 2016年第7期84-100,共17页
Managers of cement plants are gradually becoming aware of the need for soft sensors in product quality assessment. Cement clinker quality parameters are mostly measured by offline laboratory analysis or by the use of ... Managers of cement plants are gradually becoming aware of the need for soft sensors in product quality assessment. Cement clinker quality parameters are mostly measured by offline laboratory analysis or by the use of online analyzers. The measurement delay and cost, associated with these methods, are a concern in the cement industry. In this study, a regression-based model was developed to predict the clinker quality parameters as a function of the raw meal quality and the kiln operating variables. This model has mean squared error, coefficient of determination, worst case relative error and variance account for (in external data) given as 8.96 × 10<sup>–7</sup>, 0.9999, 2.17% and above 97%, respectively. Thus, it is concluded that the developed model can provide real time estimates of the clinker quality parameters and capture wider ranges of real plant operating conditions from first principle-based cement rotary kiln models. Also, the model developed can be utilized online as soft sensor since they contain only variables that are easily measured online. 展开更多
关键词 Clinker Quality Parameters Online Estimation Cement Rotary Kiln model soft sensor
在线阅读 下载PDF
疏浚泥沙管道输送过程的流速软测量技术研究
12
作者 沈楷竣 蒋爽 +3 位作者 魏长赟 管大为 黄文静 申鹏超 《海岸工程》 2025年第3期229-241,共13页
疏浚工程在港口航道建设与海洋开发中扮演着重要角色,其中绞吸挖泥船(Cutter Suction Dredgers,CSDs)作为主要作业设备,在作业过程中需要将挖掘的泥沙通过管道输送至指定地点。实时监测管道流速等关键因素对优化CSDs输送效率至关重要。... 疏浚工程在港口航道建设与海洋开发中扮演着重要角色,其中绞吸挖泥船(Cutter Suction Dredgers,CSDs)作为主要作业设备,在作业过程中需要将挖掘的泥沙通过管道输送至指定地点。实时监测管道流速等关键因素对优化CSDs输送效率至关重要。然而,由于作业环境的严苛性,传统物理传感器的高成本和复杂维护要求限制了其广泛应用。为此,本文以流速为对象,提出了一种结合交互式卷积模块(Interactive Convolutional Block,ICB)和Transformer模型的软测量方法ICBFormer,旨在替代传统流量计。ICBFormer模型利用ICB模块捕捉变量间的复杂关系,获取多尺度时间特征;随后,结合Transformer模型在长序列特征提取上的优势,高效处理变量数据序列之间的动态关系,实现对管道流速的精准预测。本文通过搭建疏浚泥泵输送模拟实验平台采集数据进行验证。实验结果表明,本文提出的ICBFormer在流速预测方面具有显著优势,为降低挖泥船的传感器成本和维护费用提供了新的解决方案。 展开更多
关键词 绞吸挖泥船 泥浆管道输送 流速 软测量 交互式卷积模块 Transformer模型
在线阅读 下载PDF
面向多采样率数据的TTPA-LSTM软测量建模 被引量:1
13
作者 王法正 隋璘 熊伟丽 《化工学报》 北大核心 2025年第4期1635-1646,共12页
实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高... 实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。 展开更多
关键词 多采样率 时间感知模式注意力 长短时记忆网络 软测量 神经网络 过程控制 动态建模
在线阅读 下载PDF
基于改进灰狼优化算法的区间二型TSK FLS方法在化工过程软测量中的应用
14
作者 曾钰翔 张栓 《化工自动化及仪表》 2025年第1期83-93,共11页
针对具有强非线性、复杂性的化工过程软测量建模问题,在区间二型TSK模糊系统(IT2 TSK FLS)的基础上,结合改进灰狼优化(IGWO)算法策略,提出IGWO-IT2 TSK FLS方法。与一型TSK模糊逻辑系统方法相比,IT2 TSK FLS方法可以同时建模个体内不确... 针对具有强非线性、复杂性的化工过程软测量建模问题,在区间二型TSK模糊系统(IT2 TSK FLS)的基础上,结合改进灰狼优化(IGWO)算法策略,提出IGWO-IT2 TSK FLS方法。与一型TSK模糊逻辑系统方法相比,IT2 TSK FLS方法可以同时建模个体内不确定性和个体间的不确定性,在现有误差反向传播(BP)算法训练的基础上,将IGWO算法用于模型前件参数和后件参数的设计,以进一步提高模型的预测性能。通过对灰狼优化算法进行改进,引入早熟收敛判断机制、非线性余弦调整策略、Levy飞行策略,提高算法的收敛速度并避免陷入局部最优。将IGWO-IT2 TSK FLS方法应用于脱丁烷塔的软测量实例建模中,在同等条件下,对一型TSK FLS方法以及BP算法、遗传算法(GA)、差分进化(DE)、粒子群优化(PSO)、生物地理学优化(BBO)、灰狼优化算法(GWO)等优化的IT2 TSK FLS方法进行比较,实验结果表明:IGWO-IT2 TSK FLS方法在性能上优于对比方法,证实了方法的有效性和应用潜力。 展开更多
关键词 IGWO-IT2 TSK FLS方法 脱丁烷塔 软测量建模 早熟收敛判断机制 非线性余弦调整策略 Levy飞行策略
在线阅读 下载PDF
基于模糊域适应回归的非线性多工况软测量方法
15
作者 叶泽甫 韩鹏东 +2 位作者 朱竹军 任密蜂 阎高伟 《控制工程》 北大核心 2025年第9期1709-1717,共9页
现有的利用迁移学习技术解决多工况软测量问题的建模方法大都依赖于域适应偏最小二乘回归模型框架,无法应对复杂工业过程中数据的非线性与不确定性。为提高跨工况条件下软测量模型的预测精度,提出了一种基于模糊域适应回归的非线性多工... 现有的利用迁移学习技术解决多工况软测量问题的建模方法大都依赖于域适应偏最小二乘回归模型框架,无法应对复杂工业过程中数据的非线性与不确定性。为提高跨工况条件下软测量模型的预测精度,提出了一种基于模糊域适应回归的非线性多工况软测量方法。首先,将T-S(Takagi-Sugeno)模糊模型中模糊规则的条件视为特征提取器,通过迁移C均值聚类方法将历史工况中的聚类中心迁移到当前工况中,实现模糊规则的条件对齐;然后,引入基于迁移子空间的偏最小二乘回归方法替代最小二乘计算T-S模糊模型的最优回归系数,实现模糊规则的结论对齐;最后,给出了多工况模糊软测量系统建模的具体步骤。通过一个数值案例和田纳西伊斯曼(Tennessee Eastman, TE)过程数据的仿真实验,验证了所提算法的有效性。 展开更多
关键词 软测量 多工况 模糊域适应 T-S模糊模型 域适应
原文传递
基于最小二乘支持向量机的软测量建模 被引量:102
16
作者 阎威武 朱宏栋 邵惠鹤 《系统仿真学报》 CAS CSCD 2003年第10期1494-1496,共3页
软测量技术在工业过程控制中得到了广泛的应用,对保证产品质量和安全生产有很重要的作用。软测量技术的核心问题是建立优良的软测量数学模型。支持向量机是近几年发展起来的机器学习的新方法,它较好地解决了小样本、非线性、高维数、局... 软测量技术在工业过程控制中得到了广泛的应用,对保证产品质量和安全生产有很重要的作用。软测量技术的核心问题是建立优良的软测量数学模型。支持向量机是近几年发展起来的机器学习的新方法,它较好地解决了小样本、非线性、高维数、局部极小点等实际问题。本文研究了基于最小二乘支持向量机的软测量建模方法,并用交叉验证的方法进行支持向量机参数选择。将基于最小二乘支持向量机的软测量模型应用于轻柴油凝固点的预估。结果表明最小二乘支持向量机是软测量建模的一种非常有效的方法。 展开更多
关键词 最小二乘支持向量机 软测量 建模 交叉验证
在线阅读 下载PDF
基于MI-LSSVM的水泥生料细度软测量建模 被引量:19
17
作者 赵彦涛 单泽宇 +2 位作者 常跃进 陈宇 郝晓辰 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第2期487-496,共10页
针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MI-LSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题... 针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MI-LSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题,并在此基础之上,提出双向选择算法获取输入变量,将得到的输入变量应用于最小二乘支持向量机中,建立水泥生料细度软测量模型,最后应用水泥厂的实际数据对基于互信息和最小二乘支持向量机的水泥生料细度软测量模型进行仿真。结果表明该方法预测精度高、泛化能力强。 展开更多
关键词 互信息 最小二乘支持向量机 变量选择 水泥生料细度 软测量建模
在线阅读 下载PDF
基于神经网络及机理分析的气力输送粉料质量流量软测量 被引量:10
18
作者 赵昀 黄志尧 +1 位作者 王保良 李海青 《仪器仪表学报》 EI CAS CSCD 北大核心 2000年第4期360-363,共4页
本文提出了神经网络与机理分析结合的软测量方法 ,用以实现对气力输送系统中粉料质量流量的在线测量。通过实验验证 ,这种混合软测量方法是有效的。同时 ,与机理模型以及与基于标准神经网络的软测量方法的比较研究表明 。
关键词 气力输送 质量流量 神经网络 软测量模型 粉料
在线阅读 下载PDF
基于FCM聚类的气化炉温度多模型软测量建模 被引量:14
19
作者 钟伟民 李杰 +2 位作者 程辉 孔祥东 钱锋 《化工学报》 EI CAS CSCD 北大核心 2012年第12期3951-3955,共5页
水煤浆气化是煤炭资源高效清洁利用的重要技术。气化炉反应温度是关系装置能否长周期安全稳定运行的关键参数,但是热电偶在高温、高压和气固物流冲刷环境下,使用寿命有限。本文以一多喷嘴对置式水煤浆气化炉为研究对象,在多模型建模方... 水煤浆气化是煤炭资源高效清洁利用的重要技术。气化炉反应温度是关系装置能否长周期安全稳定运行的关键参数,但是热电偶在高温、高压和气固物流冲刷环境下,使用寿命有限。本文以一多喷嘴对置式水煤浆气化炉为研究对象,在多模型建模方法的基础上,以数据点间的相似程度作为多模型子区间的划分手段,结合最小二乘支持向量机建立了基于模糊C均值聚类的气化炉温度软测量模型。实际工业运行数据验证结果表明,该软测量模型拟合精度较高,模型泛化能力较强。 展开更多
关键词 水煤浆气化 模糊C均值聚类 最小二乘支持向量机 多模型 软测量建模
在线阅读 下载PDF
化工过程软测量建模方法研究进展 被引量:104
20
作者 曹鹏飞 罗雄麟 《化工学报》 EI CAS CSCD 北大核心 2013年第3期788-800,共13页
软测量仪表是解决化工过程中质量变量难以实时测量的重要手段。软测量仪表的核心问题是软测量建模。阐述了软测量建模与辨识和非线性建模的关系:质量变量和易测变量的动态关系存在于增量之间,辨识模型依赖于增量数据,软测量建模则是依... 软测量仪表是解决化工过程中质量变量难以实时测量的重要手段。软测量仪表的核心问题是软测量建模。阐述了软测量建模与辨识和非线性建模的关系:质量变量和易测变量的动态关系存在于增量之间,辨识模型依赖于增量数据,软测量建模则是依赖于实测变量数据来获取这个动态关系;非线性建模建立了变量间的静态关系,忽略了对象动态特性,而软测量建模要兼顾对动态特性的表征。随着人们对过程特性的认识加深,软测量建模方法不断发展,经历了从机理建模到数据驱动建模,从线性建模到非线性建模,从静态建模到动态建模的过程。详细讨论了软测量建模的发展过程,众多建模方法的优缺点及适用情况和现在建模的热点,最后对软测量建模方法进行了总体展望。 展开更多
关键词 软测量 建模 辨识 非线性建模 数据驱动建模 非线性动态建模
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部