A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,...A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,numerical and/or experimental results.In the DSPH method,cracking is realized by breaking the virtual bonds via a pseudo-spring method based on Mohr–Coulomb failure criteria.The damaged particles are instantaneously replaced by discontinuous particles and the contact bond between the original and discontinuous particles is formed to simulate the frictional slip and separation/contraction between fracture surfaces based on the block contact algorithm.The motion of rock blocks and the contact force of discontinuous particles are determined following Newton's second law.The results indicate that the DSPH method precisely captures the cracking,contact formation and complete failure across six numerical benchmark tests.This single smoothed particle hydrodynamics(SPH)framework could significantly improve computational efficiency and is potentially applicable to broad multi-physical rock engineering problems of different scales.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monit...Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monitoring of glucose trends,and can place patients at risk for hypo-and hyperglycemia.Continuous glucose monitors(CGMs)have emerged as a mainstay for pediatric diabetic care and are continuing to advance treatment by providing real-time blood glucose(BG)data,with trend analysis aided by machine learning(ML)algorithms.These predictive analytics serve to prevent against dangerous BG variations in the perioperative environment for fasted children undergoing surgical stress.Integration of CGM data into electronic health records(EHR)is essential,as it establishes a foundation for future technologic interfaces with artificial intelligence(AI).Challenges in perioperative CGM implementation include equitable device access,protection of patient privacy and data accuracy,ensuring institution of standardized protocols,and financing the cumbersome healthcare costs associated with staff training and technology platforms.This paper advocates for implementation of CGM data into the EHR utilizing multiple facets of AI/ML algorithms.展开更多
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE...A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.展开更多
To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrate...To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.展开更多
BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the...BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the association between CGM-derived indicators and the risk of DF in individuals with type 2 diabetes mellitus(T2DM).METHODS A total of 591 individuals with T2DM(297 with DF and 294 without DF)were enrolled.Relevant clinical data,complications,comorbidities,hematological parameters,and 72-hour CGM data were collected.Logistic regression analysis was employed to examine the relationship between these measurements and the risk of DF.RESULTS Individuals with DF exhibited higher mean blood glucose(MBG)levels and increased proportions of time above range(TAR),TAR level 1,and TAR level 2,but lower TIR(all P<0.001).Patients with DF had significantly lower rates of achieving target ranges for TIR,TAR,and TAR level 2 than those without DF(all P<0.05).Logistic regression analysis revealed that GRI,MBG,and TAR level 1 were positively associated with DF risk,while TIR was inversely correlated(all P<0.05).Achieving TIR and TAR was inversely correlated with white blood cell count and glycated hemoglobin A1c levels(P<0.05).Additionally,achieving TAR was influenced by fasting plasma glucose,body mass index,diabetes duration,and antidiabetic medication use.CONCLUSION CGM metrics,particularly TIR and GRI,are significantly associated with the risk of DF in T2DM,emphasizing the importance of improved glucose control.展开更多
The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate...The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.展开更多
Vein graft(VG)failure(VGF)is associated with VG intimal hyperplasia,which is characterized by abnormal accumulation of vascular smooth muscle cells(VSMCs).Most neointimal VSMCs are derived from pre-existing VSMCs via ...Vein graft(VG)failure(VGF)is associated with VG intimal hyperplasia,which is characterized by abnormal accumulation of vascular smooth muscle cells(VSMCs).Most neointimal VSMCs are derived from pre-existing VSMCs via a process of VSMC phenotypic transition,also known as dedifferentiation.There is increasing evidence to suggest that ginger or its bioactive ingredients may block VSMC dedifferentiation,exerting vasoprotective functions;however,the precise mechanisms have not been fully characterized.Therefore,we investigated the effect of ginger on VSMC phenotypic transition in VG remodeling after transplantation.Ginger significantly inhibited neointimal hyperplasia and promoted lumen(L)opening in a 3-month VG,which was primarily achieved by reducing ferroptotic stress.Ferroptotic stress is a pro-ferroptotic state.Contractile VSMCs did not die but instead gained a proliferative capacity and switched to the secretory type,forming neointima(NI)after vein transplantation.Ginger and its two main vasoprotective ingredients(6-gingerol and 6-shogaol)inhibit VSMC dedifferentiation by reducing ferroptotic stress.Network pharmacology analysis revealed that 6-gingerol inhibits ferroptotic stress by targeting P53,while 6-shogaol inhibits ferroptotic stress by targeting 5-lipoxygenase(Alox5),both promoting ferroptosis.Furthermore,both ingredients co-target peroxisome proliferator-activated receptor gamma(PPARγ),decreasing PPARγ-mediated nicotinamide adenine dinucleotide phosphate(NADPH)oxidase 1(Nox1)expression.Nox1 promotes intracellular reactive oxygen species(ROS)production and directly induces VSMC dedifferentiation.In addition,Nox1 is a ferroptosis-promoting gene that encourages ferroptotic stress production,indirectly leading to VSMC dedifferentiation.Ginger,a natural multi-targeted ferroptotic stress inhibitor,finely and effectively prevents VSMC phenotypic transition and protects against venous injury remodeling.展开更多
We present a hybrid smoothed particle magnetohydrodynamics(SPMHD)code integrating smoothed particle hydrodynamics(SPH)and finite element methods(FEM)to simulate coupled fluid-electromagnetic phenomena.The framework em...We present a hybrid smoothed particle magnetohydrodynamics(SPMHD)code integrating smoothed particle hydrodynamics(SPH)and finite element methods(FEM)to simulate coupled fluid-electromagnetic phenomena.The framework employs SPH for fluid dynamics,addressing large deformations,shocks,and plasma behavior,while FEM resolves electromagnetic fields via Maxwell's equations for magnetic vector and electric scalar potentials,ensuring divergence-free conditions and global current density calculations in conductive region.Operator splitting method couples these modules,enabling real-time integration of magnetic,electric,thermal,and fluid fields.Benchmark tests validate the code against analytical solutions and existing models,including blow-by instability simulations that demonstrate the method's accuracy in capturing fluid-magnetic interactions.Designed for 3D applications,SPMHD offers robust scalability across multiprocessor architectures,establishing it as a versatile tool for plasma physics research.展开更多
Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experiment...Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experimental results indicate that increasing soaking time increases the volume fraction of martensite and the size of martensite islands, as well as tensile strength(TS) and yield strength(YS),while decreasing plasticity.As the steel slowly cools to a lower temperature prior to final quenching, TS and YS decrease, whereas elongation increases.The decrease in martensite content is due to the partial decomposition of austenite into ferrite during long slow cooling before quenching.As overaging temperature increases because of the tempering of martensite and aging of ferrite, TS decreases and YS increases.Work hardening analysis shows that in the initial stage of deformation, low overaging temperatures enhance work hardening ability.展开更多
Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.The...Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.展开更多
Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuo...Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuous light exposure.This study aimed to investigate the morphological and functional alterations in BAT under continuous light conditions and to identify traditional Chinese medicine compounds capable of reversing these changes.Methods:A metabolic disorder model was established by subjecting mice to continuous light exposure for 5 weeks.During this period,body weight,food intake,and body fat percentage were monitored.Serum levels of triglyceride(TG),total cholesterol(TC),high density lipoprotein cholesterol(HDL-C),and low density lipoprotein cholesterol(LDL-C)were measured to assess lipid metabolism.Histological changes in BAT were examined using H&E staining.The expression of the thermogenic marker uncoupling protein 1(UCP1)in BAT was determined by RT-qPCR and Western blot to evaluate thermogenic function.RNA sequencing(RNA-seq)was employed to identify differentially expressed genes(DEGs)involved in BAT whitening induced by prolonged continuous light exposure.DEGs were analyzed using the connectivity map(CMap)database to identify potential preventive and therapeutic compounds.The therapeutic efficacy of the selected compounds was subsequently evaluated using the above indicators,and key pathways were validated through western blot analysis.Results:After 5 weeks of continuous light exposure,mice exhibited increased body fat percentage and serum levels of TG,impaired mitochondrial function,reduced thermogenic capacity,and whitening of BAT.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses indicated that BAT whitening was primarily associated with the adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,fatty acid metabolism,and circadian rhythm.Ten hub genes identified using Cytoscape were mainly related to AMPK signaling and heat shock proteins.In vivo experiments showed that cordycepin significantly attenuated the increase in body fat percentage caused by prolonged light exposure.This effect was mediated by activation of the AMPK/PGC-1α/UCP1 signaling pathway,which restored the multilocular morphology and thermogenic function of BAT.Conclusion:Cordycepin mitigates continuous light-induced BAT whitening and metabolic disturbances by activating the AMPK signaling pathway.展开更多
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through...The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.展开更多
Background:Mechanical ventilation(MV)provides life support for patients with severe respiratory distress but can simultaneously cause ventilator-induced lung injury(VILI).However,due to a poor understanding of its mec...Background:Mechanical ventilation(MV)provides life support for patients with severe respiratory distress but can simultaneously cause ventilator-induced lung injury(VILI).However,due to a poor understanding of its mechanism,there is still a lack of effective remedies for the often-deadly VILI.Recent studies indicate that the stretch associated with MV can enhance the secretion of extracellular vesicles(EVs)and induce endoplasmic reticulum(ER)stress in airway smoothmuscle cells(ASMCs),both of which can contribute to VILI.But whetherMVassociated stretch enhances the secretion of EVs via ER stress in ASMCs as an underlying mechanism of VILI remains unknown.Methods:In this study,we exposed cultured human ASMCs to stretch(13%strain)and mouse models to MV at tidal volume(18 mL/kg).Subsequently,the amount of secreted EVs in the culture medium of ASMCs and the bronchoalveolar lavage fluid(BALF)of mousemodels was quantitatively evaluated by ultracentrifugation,transmission electron microscopy,Western blot,flow cytometry,and nanoparticle tracking analysis.The cultured ASMCs and the lung tissues of mouse models were assessed for expression of biomarkers of EVs(cluster of differentiation antigen 63,CD63),ER stress(heat shock protein family A member 5,HSPA5),and EVs regulating molecule Rab27a by immunofluorescence microscopy,immunohistochemistry(IHC)and enzyme-linked immunosorbent assay(ELISA),respectively.MicroRNAs(miRNAs)in EVs from ASMCs were measured with miRNA whole genome sequencing(miRNA-Seq).Results:We found that stretch enhanced EV secretion from cultured ASMCs.In addition,the cultured ASMCs and the mouse models were either or not pretreated with ER stress inhibitor(tauroursodeoxycholic acid,TUDCA)/EV secretion inhibitor(GW4869)prior to stretch or MV.We found that MV-associated stretch enhanced the expression of CD63,HSPA5,and Rab27a in cultured ASMCs and BALF/lung tissues of mousemodels,which could all be attenuated with TUDCA/GW4869 pretreatment.miRNA-Seq data show that differentially expressed miRNAs in EVsmainlymodulate gene transcription.Furthermore,the EVs fromcultured ASMCs under stretch tended to enhance detachment and expression of inflammatory cytokines,i.e.,transforming growth factor-β1(TGF-β1),interleukin-10(IL-10)in cultured airway epithelial cells.The expression of TGF-β1 and IL-10 in BALF of the mouse models also increased in response to MV,which was attenuated together with partial improvement of lung injury by pretreatment with TUDCA,GW4869/Rab27a siRNAs.Conclusion:Taken together,our data indicate thatMV-associated stretch can enhance the secretion of EVs from ASMCs via ER stress signaling to mediate airway inflammation and VILI,which provides new insight for further exploring EVs for the diagnosis and treatment of VILI.展开更多
The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aq...The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.展开更多
基金financial support from the National Key Research and Development Program of China(Grant No.2019YFC1509702)the Fundamental Research Funds for the Central Universities in Chinathe National Natural Science Foundation of China(Grant No.42377162).
文摘A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,numerical and/or experimental results.In the DSPH method,cracking is realized by breaking the virtual bonds via a pseudo-spring method based on Mohr–Coulomb failure criteria.The damaged particles are instantaneously replaced by discontinuous particles and the contact bond between the original and discontinuous particles is formed to simulate the frictional slip and separation/contraction between fracture surfaces based on the block contact algorithm.The motion of rock blocks and the contact force of discontinuous particles are determined following Newton's second law.The results indicate that the DSPH method precisely captures the cracking,contact formation and complete failure across six numerical benchmark tests.This single smoothed particle hydrodynamics(SPH)framework could significantly improve computational efficiency and is potentially applicable to broad multi-physical rock engineering problems of different scales.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金Supported by NSFC (No.12031006)Fundamental Research Funds for the Central Universities of China。
文摘We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
文摘Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monitoring of glucose trends,and can place patients at risk for hypo-and hyperglycemia.Continuous glucose monitors(CGMs)have emerged as a mainstay for pediatric diabetic care and are continuing to advance treatment by providing real-time blood glucose(BG)data,with trend analysis aided by machine learning(ML)algorithms.These predictive analytics serve to prevent against dangerous BG variations in the perioperative environment for fasted children undergoing surgical stress.Integration of CGM data into electronic health records(EHR)is essential,as it establishes a foundation for future technologic interfaces with artificial intelligence(AI).Challenges in perioperative CGM implementation include equitable device access,protection of patient privacy and data accuracy,ensuring institution of standardized protocols,and financing the cumbersome healthcare costs associated with staff training and technology platforms.This paper advocates for implementation of CGM data into the EHR utilizing multiple facets of AI/ML algorithms.
基金the National Natural Science Foundation of China(No.11672238)the 111 Project(No.BP0719007)the Shaanxi Province Natural Science Foundation(No.2020JZ-06)for the financial support.
文摘A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.
基金supported by National Key Research and Development Technology Project program(SQ2022YFB2400136).
文摘To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.
基金Supported by Yunnan Province Academician(Expert)Workstation Project,No.202305AF150097the Basic Research Program of Yunnan Province(Kunming Medical University Joint Special Project),No.202101AY070001-276+3 种基金the National Natural Science Foundation of China,No.82160159the Key Project Program of Yunnan Province(Kunming Medical University Joint Special Project),No.202301AY070001-013the Major Science and Technology Project of Yunnan Province,No.202202AA100004the Double First-class University Construction Project of Yunnan University,No.CY22624106.
文摘BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the association between CGM-derived indicators and the risk of DF in individuals with type 2 diabetes mellitus(T2DM).METHODS A total of 591 individuals with T2DM(297 with DF and 294 without DF)were enrolled.Relevant clinical data,complications,comorbidities,hematological parameters,and 72-hour CGM data were collected.Logistic regression analysis was employed to examine the relationship between these measurements and the risk of DF.RESULTS Individuals with DF exhibited higher mean blood glucose(MBG)levels and increased proportions of time above range(TAR),TAR level 1,and TAR level 2,but lower TIR(all P<0.001).Patients with DF had significantly lower rates of achieving target ranges for TIR,TAR,and TAR level 2 than those without DF(all P<0.05).Logistic regression analysis revealed that GRI,MBG,and TAR level 1 were positively associated with DF risk,while TIR was inversely correlated(all P<0.05).Achieving TIR and TAR was inversely correlated with white blood cell count and glycated hemoglobin A1c levels(P<0.05).Additionally,achieving TAR was influenced by fasting plasma glucose,body mass index,diabetes duration,and antidiabetic medication use.CONCLUSION CGM metrics,particularly TIR and GRI,are significantly associated with the risk of DF in T2DM,emphasizing the importance of improved glucose control.
基金financially supported by the Basic and Applied Basic Research Foundation of Guangdong Province(Grant Nos.2023A1515010890 and 2022A1515240039)the National Natural Science Foundation of China(Grant No.52001071)+4 种基金the Special Fund Competition Allocation Project of Guangdong Science and Technology Innovation Strategy(Grant No.2023A01022)the Non-funded Science and Technology Research Program Project of Zhanjiang(Grant No.2021B01416)Student Innovation Team Project of Guangdong Ocean University(Grant No.CXTD2023012)the Doctor Initiate Projects of Guangdong Ocean University(Grant Nos.060302072103 and R20068)the Marine Youth Talent Innovation Project of Zhanjiang(Grant No.2021E05009).
文摘The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.
基金supported by grants from the Natural Science Foundation of Shandong Province,China(Grant Nos.:ZR2019ZD28 and ZR2022QH008)the National Natural Science Foundation of China(Grant Nos.:82270301 and 82200465)+1 种基金China Postdoctoral Science Foundation(Grant No.:2023M731842)Shandong Postdoctoral Science Foundation,China(Grant No.:SDCX-ZG-202203013).
文摘Vein graft(VG)failure(VGF)is associated with VG intimal hyperplasia,which is characterized by abnormal accumulation of vascular smooth muscle cells(VSMCs).Most neointimal VSMCs are derived from pre-existing VSMCs via a process of VSMC phenotypic transition,also known as dedifferentiation.There is increasing evidence to suggest that ginger or its bioactive ingredients may block VSMC dedifferentiation,exerting vasoprotective functions;however,the precise mechanisms have not been fully characterized.Therefore,we investigated the effect of ginger on VSMC phenotypic transition in VG remodeling after transplantation.Ginger significantly inhibited neointimal hyperplasia and promoted lumen(L)opening in a 3-month VG,which was primarily achieved by reducing ferroptotic stress.Ferroptotic stress is a pro-ferroptotic state.Contractile VSMCs did not die but instead gained a proliferative capacity and switched to the secretory type,forming neointima(NI)after vein transplantation.Ginger and its two main vasoprotective ingredients(6-gingerol and 6-shogaol)inhibit VSMC dedifferentiation by reducing ferroptotic stress.Network pharmacology analysis revealed that 6-gingerol inhibits ferroptotic stress by targeting P53,while 6-shogaol inhibits ferroptotic stress by targeting 5-lipoxygenase(Alox5),both promoting ferroptosis.Furthermore,both ingredients co-target peroxisome proliferator-activated receptor gamma(PPARγ),decreasing PPARγ-mediated nicotinamide adenine dinucleotide phosphate(NADPH)oxidase 1(Nox1)expression.Nox1 promotes intracellular reactive oxygen species(ROS)production and directly induces VSMC dedifferentiation.In addition,Nox1 is a ferroptosis-promoting gene that encourages ferroptotic stress production,indirectly leading to VSMC dedifferentiation.Ginger,a natural multi-targeted ferroptotic stress inhibitor,finely and effectively prevents VSMC phenotypic transition and protects against venous injury remodeling.
基金supported by the Major National Science and Technology Infrastructure(No.2208-000000-04-01249628)the Shanghai Science and Technology Commission(No.21DZ1206500)。
文摘We present a hybrid smoothed particle magnetohydrodynamics(SPMHD)code integrating smoothed particle hydrodynamics(SPH)and finite element methods(FEM)to simulate coupled fluid-electromagnetic phenomena.The framework employs SPH for fluid dynamics,addressing large deformations,shocks,and plasma behavior,while FEM resolves electromagnetic fields via Maxwell's equations for magnetic vector and electric scalar potentials,ensuring divergence-free conditions and global current density calculations in conductive region.Operator splitting method couples these modules,enabling real-time integration of magnetic,electric,thermal,and fluid fields.Benchmark tests validate the code against analytical solutions and existing models,including blow-by instability simulations that demonstrate the method's accuracy in capturing fluid-magnetic interactions.Designed for 3D applications,SPMHD offers robust scalability across multiprocessor architectures,establishing it as a versatile tool for plasma physics research.
文摘Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experimental results indicate that increasing soaking time increases the volume fraction of martensite and the size of martensite islands, as well as tensile strength(TS) and yield strength(YS),while decreasing plasticity.As the steel slowly cools to a lower temperature prior to final quenching, TS and YS decrease, whereas elongation increases.The decrease in martensite content is due to the partial decomposition of austenite into ferrite during long slow cooling before quenching.As overaging temperature increases because of the tempering of martensite and aging of ferrite, TS decreases and YS increases.Work hardening analysis shows that in the initial stage of deformation, low overaging temperatures enhance work hardening ability.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3603403,2021YFB3600502)the National Natural Science Foundation of China(Grant Nos.62075040,62301150)+3 种基金the Southeast University Interdisciplinary Research Program for Young Scholars(2024FGC1007)the Start-up Research Fund of Southeast University(RF1028623164)the Nanjing Science and Technology Innovation Project for Returned Overseas Talent(4206002302)the Fundamental Research Funds for the Central Universities(2242024K40015).
文摘Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.
文摘Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuous light exposure.This study aimed to investigate the morphological and functional alterations in BAT under continuous light conditions and to identify traditional Chinese medicine compounds capable of reversing these changes.Methods:A metabolic disorder model was established by subjecting mice to continuous light exposure for 5 weeks.During this period,body weight,food intake,and body fat percentage were monitored.Serum levels of triglyceride(TG),total cholesterol(TC),high density lipoprotein cholesterol(HDL-C),and low density lipoprotein cholesterol(LDL-C)were measured to assess lipid metabolism.Histological changes in BAT were examined using H&E staining.The expression of the thermogenic marker uncoupling protein 1(UCP1)in BAT was determined by RT-qPCR and Western blot to evaluate thermogenic function.RNA sequencing(RNA-seq)was employed to identify differentially expressed genes(DEGs)involved in BAT whitening induced by prolonged continuous light exposure.DEGs were analyzed using the connectivity map(CMap)database to identify potential preventive and therapeutic compounds.The therapeutic efficacy of the selected compounds was subsequently evaluated using the above indicators,and key pathways were validated through western blot analysis.Results:After 5 weeks of continuous light exposure,mice exhibited increased body fat percentage and serum levels of TG,impaired mitochondrial function,reduced thermogenic capacity,and whitening of BAT.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses indicated that BAT whitening was primarily associated with the adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,fatty acid metabolism,and circadian rhythm.Ten hub genes identified using Cytoscape were mainly related to AMPK signaling and heat shock proteins.In vivo experiments showed that cordycepin significantly attenuated the increase in body fat percentage caused by prolonged light exposure.This effect was mediated by activation of the AMPK/PGC-1α/UCP1 signaling pathway,which restored the multilocular morphology and thermogenic function of BAT.Conclusion:Cordycepin mitigates continuous light-induced BAT whitening and metabolic disturbances by activating the AMPK signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant 12472113).
文摘The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.
基金funded by the Natural Science Foundation of China(NSFC),Grants No.12072048 to M.L.,12272063,and 11532003 to L.D.partially supported by the Science and Technology Innovation Leading Plan of High-Tech Industry in Hunan Province,China,Grant No.2020SK2018 to L.D.
文摘Background:Mechanical ventilation(MV)provides life support for patients with severe respiratory distress but can simultaneously cause ventilator-induced lung injury(VILI).However,due to a poor understanding of its mechanism,there is still a lack of effective remedies for the often-deadly VILI.Recent studies indicate that the stretch associated with MV can enhance the secretion of extracellular vesicles(EVs)and induce endoplasmic reticulum(ER)stress in airway smoothmuscle cells(ASMCs),both of which can contribute to VILI.But whetherMVassociated stretch enhances the secretion of EVs via ER stress in ASMCs as an underlying mechanism of VILI remains unknown.Methods:In this study,we exposed cultured human ASMCs to stretch(13%strain)and mouse models to MV at tidal volume(18 mL/kg).Subsequently,the amount of secreted EVs in the culture medium of ASMCs and the bronchoalveolar lavage fluid(BALF)of mousemodels was quantitatively evaluated by ultracentrifugation,transmission electron microscopy,Western blot,flow cytometry,and nanoparticle tracking analysis.The cultured ASMCs and the lung tissues of mouse models were assessed for expression of biomarkers of EVs(cluster of differentiation antigen 63,CD63),ER stress(heat shock protein family A member 5,HSPA5),and EVs regulating molecule Rab27a by immunofluorescence microscopy,immunohistochemistry(IHC)and enzyme-linked immunosorbent assay(ELISA),respectively.MicroRNAs(miRNAs)in EVs from ASMCs were measured with miRNA whole genome sequencing(miRNA-Seq).Results:We found that stretch enhanced EV secretion from cultured ASMCs.In addition,the cultured ASMCs and the mouse models were either or not pretreated with ER stress inhibitor(tauroursodeoxycholic acid,TUDCA)/EV secretion inhibitor(GW4869)prior to stretch or MV.We found that MV-associated stretch enhanced the expression of CD63,HSPA5,and Rab27a in cultured ASMCs and BALF/lung tissues of mousemodels,which could all be attenuated with TUDCA/GW4869 pretreatment.miRNA-Seq data show that differentially expressed miRNAs in EVsmainlymodulate gene transcription.Furthermore,the EVs fromcultured ASMCs under stretch tended to enhance detachment and expression of inflammatory cytokines,i.e.,transforming growth factor-β1(TGF-β1),interleukin-10(IL-10)in cultured airway epithelial cells.The expression of TGF-β1 and IL-10 in BALF of the mouse models also increased in response to MV,which was attenuated together with partial improvement of lung injury by pretreatment with TUDCA,GW4869/Rab27a siRNAs.Conclusion:Taken together,our data indicate thatMV-associated stretch can enhance the secretion of EVs from ASMCs via ER stress signaling to mediate airway inflammation and VILI,which provides new insight for further exploring EVs for the diagnosis and treatment of VILI.
基金financially supported by the Strategic Environmental Research and Development Program(Grant No.ER19-1075)。
文摘The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.