Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial...Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial transformation.Amidst profound shifts in the global technological landscape,smart materials,smart devices,and smart systems have become the defining pillars of our era,which will catalyze paradigm shifts in engineering science and reshape the trajectory of modern technology.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre...The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.展开更多
为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快...为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。展开更多
This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in t...This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in the world with significant energy challenges. It examines the current state of energy infrastructure in Burkina Faso, focusing on the integration of renewable energy sources, particularly solar photovoltaics. It highlights the role of smart grid technologies in enabling the efficient integration of renewable energy, improving grid stability and facilitating rural electrification. Additionally, the review addresses key challenges such as inadequate infrastructure, regulatory gaps and financial constraints that hinder the deployment of smart grids in the country. By analysing existing research and ongoing projects, this paper provides a comprehensive overview of the opportunities and barriers to implementing a smart electricity grid in Burkina Faso and offers recommendations for future development and policy frameworks.展开更多
The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solution...The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources.展开更多
1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands ...1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands for greater flexibility and efficiency.The integration of advanced information technology facilitates smart manufacturing(SM),which optimizes production,management,and supply chains[1].展开更多
The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,...The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,device operations,and patterns of user behavior.Such data plays an essential role in criminal inves-tigations,highlighting the growing importance of specialized smart home forensics.Given the rapid advancement in smart home software and hardware technologies,many companies are introducing new devices and services that expand the market.Consequently,scalable and platform-specific forensic research is necessary to support efficient digital investigations across diverse smart home ecosystems.This study thoroughly examines the core components and structures of smart homes,proposing a generalized architecture that represents various operational environments.A three-stage smart home forensics framework is introduced:(1)analyzing application functions to infer relevant data,(2)extracting and processing data from interconnected devices,and(3)identifying data valuable for investigative purposes.The framework’s applicability is validated using testbeds from Samsung SmartThings and Xiaomi Mi Home platforms,offering practical insights for real-world forensic applications.The results demonstrate that the proposed forensic framework effectively acquires and classifies relevant digital evidence in smart home platforms,confirming its practical applicability in smart home forensic investigations.展开更多
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devic...The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.展开更多
From AR-enhanced picture books to eco-friendly smart toys,the items now filling children’s shopping carts are more than just products-they epitomize the transformation of consumption in the new era.
The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it...The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it possible for these devices to communicate with one another.Technologies featured in the IoE include embedding,networking,and sensing devices.To achieve the intended results of the IoE and ease life for everyone involved,sensing devices and monitoring systems are linked together.The IoE is used in several contexts,including intelligent cars’protection,navigation,security,and fuel efficiency.The Smart Things Monitoring System(STMS)framework,which has been proposed for early occurrence identification and theft prevention,is discussed in this article.The STMS uses technologies based on the IoE and PLAs to continuously and remotely observe,control,and monitor vehicles.The STMS is familiar with the platform used by the global positioning system;as a result,the STMS can maintain a real-time record of current vehicle positions.This information is utilized to locate the vehicle in an accident or theft.The findings of the STMS system are promising for precisely identifying crashes,evaluating incident severity,and locating vehicles after collisions have occurred.Moreover,we formulate an ad hoc STMS network communication scenario to evaluate the efficacy of data communication by utilizing various network parameters,such as round-trip time(RTT),data packet transmission,data packet reception,and loss.From our experimentation,we obtained an improved communication efficiency for STMS across multiple PLAs compared to the standard greedy routing and traditional AODV approaches.Our framework facilitates adaptable solutions with communication competence by deploying Proactive PLAs in a cloud-connected smart vehicular environment.展开更多
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart...Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.展开更多
文摘Artificial intelligence has the potential to stand as the cornerstone of human society,which could drive our civilization forward and emerge as a pivotal frontier in the ongoing technological revolution and industrial transformation.Amidst profound shifts in the global technological landscape,smart materials,smart devices,and smart systems have become the defining pillars of our era,which will catalyze paradigm shifts in engineering science and reshape the trajectory of modern technology.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
文摘The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.
文摘为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。
文摘This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in the world with significant energy challenges. It examines the current state of energy infrastructure in Burkina Faso, focusing on the integration of renewable energy sources, particularly solar photovoltaics. It highlights the role of smart grid technologies in enabling the efficient integration of renewable energy, improving grid stability and facilitating rural electrification. Additionally, the review addresses key challenges such as inadequate infrastructure, regulatory gaps and financial constraints that hinder the deployment of smart grids in the country. By analysing existing research and ongoing projects, this paper provides a comprehensive overview of the opportunities and barriers to implementing a smart electricity grid in Burkina Faso and offers recommendations for future development and policy frameworks.
文摘The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources.
基金supported in part by the National Natural Science Foundation of China(62293511 and 62402256)in part by the Shandong Provincial Natural Science Foundation of China(ZR2024MF100)+1 种基金in part by the Taishan Scholars Program(tsqn202408239)in part by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT2025B13).
文摘1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands for greater flexibility and efficiency.The integration of advanced information technology facilitates smart manufacturing(SM),which optimizes production,management,and supply chains[1].
文摘The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,device operations,and patterns of user behavior.Such data plays an essential role in criminal inves-tigations,highlighting the growing importance of specialized smart home forensics.Given the rapid advancement in smart home software and hardware technologies,many companies are introducing new devices and services that expand the market.Consequently,scalable and platform-specific forensic research is necessary to support efficient digital investigations across diverse smart home ecosystems.This study thoroughly examines the core components and structures of smart homes,proposing a generalized architecture that represents various operational environments.A three-stage smart home forensics framework is introduced:(1)analyzing application functions to infer relevant data,(2)extracting and processing data from interconnected devices,and(3)identifying data valuable for investigative purposes.The framework’s applicability is validated using testbeds from Samsung SmartThings and Xiaomi Mi Home platforms,offering practical insights for real-world forensic applications.The results demonstrate that the proposed forensic framework effectively acquires and classifies relevant digital evidence in smart home platforms,confirming its practical applicability in smart home forensic investigations.
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+2 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067).
文摘The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.
文摘From AR-enhanced picture books to eco-friendly smart toys,the items now filling children’s shopping carts are more than just products-they epitomize the transformation of consumption in the new era.
基金funded by the Ministry of Science and Technology,Taiwan,grant number(MOST 111-2221-E167-025-MY2).
文摘The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it possible for these devices to communicate with one another.Technologies featured in the IoE include embedding,networking,and sensing devices.To achieve the intended results of the IoE and ease life for everyone involved,sensing devices and monitoring systems are linked together.The IoE is used in several contexts,including intelligent cars’protection,navigation,security,and fuel efficiency.The Smart Things Monitoring System(STMS)framework,which has been proposed for early occurrence identification and theft prevention,is discussed in this article.The STMS uses technologies based on the IoE and PLAs to continuously and remotely observe,control,and monitor vehicles.The STMS is familiar with the platform used by the global positioning system;as a result,the STMS can maintain a real-time record of current vehicle positions.This information is utilized to locate the vehicle in an accident or theft.The findings of the STMS system are promising for precisely identifying crashes,evaluating incident severity,and locating vehicles after collisions have occurred.Moreover,we formulate an ad hoc STMS network communication scenario to evaluate the efficacy of data communication by utilizing various network parameters,such as round-trip time(RTT),data packet transmission,data packet reception,and loss.From our experimentation,we obtained an improved communication efficiency for STMS across multiple PLAs compared to the standard greedy routing and traditional AODV approaches.Our framework facilitates adaptable solutions with communication competence by deploying Proactive PLAs in a cloud-connected smart vehicular environment.
基金supported by the National Natural Science Foundation of China(No.22376159)the Fundamental Research Funds for the Central Universities.
文摘Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.