期刊文献+
共找到623篇文章
< 1 2 32 >
每页显示 20 50 100
An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of c-φ Slopes with Spatially Variable Soil 被引量:4
1
作者 舒苏荀 龚文惠 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期113-122,共10页
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s... This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses. 展开更多
关键词 slope reliability spatial variability artificial neural network Latin hypercube sampling random finite element method
在线阅读 下载PDF
Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information 被引量:8
2
作者 Xueyou Li Limin Zhang Shuai Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1679-1687,共9页
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me... New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed. 展开更多
关键词 slope reliability Monitoring INFORMATION BAYESIAN networks RISK management VALUE of INFORMATION BIG data
在线阅读 下载PDF
Application of artificial neural network for calculating anisotropic friction angle of sands and effect on slope stability 被引量:3
3
作者 Hamed Farshbaf Aghajani Hossein Salehzadeh Habib Shahnazari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1878-1891,共14页
The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking... The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions. 展开更多
关键词 ANISOTROPY artificial neural network SAND principal stress rotation slope stability
在线阅读 下载PDF
基于神经网络及数值模拟的边坡变形监测方法研究
4
作者 罗致 姚静 王贵禄 《四川建材》 2026年第1期138-141,144,共5页
由于公路边坡垮塌破坏造成的重大交通瘫痪和生命财产损失事故屡见不鲜,西南地区云贵川等省份更是重灾区。基于神经网络本构模型进行边坡变形监测的方法克服传统经验方法及检测手段的不足,避免现有机器学习方法对少量监测数据进行反演导... 由于公路边坡垮塌破坏造成的重大交通瘫痪和生命财产损失事故屡见不鲜,西南地区云贵川等省份更是重灾区。基于神经网络本构模型进行边坡变形监测的方法克服传统经验方法及检测手段的不足,避免现有机器学习方法对少量监测数据进行反演导致的预测结果准确性欠缺的问题,并且,得到的本构模型更能反映岩土体的真实应力应变关系,反演的参数所开展的数值模拟计算所得结果与实测变形监测数据能够保持较好的一致性。该方法可及时预警边坡存在的不稳定现象,有助于高效准确地评估、分析、监测及治理路堑边坡可能出现的各种灾害,减少经济损失、降低灾害风险。 展开更多
关键词 边坡变形监测 神经网络 正交试验设计 数值模拟
在线阅读 下载PDF
Overhanging rock slope by design:An integrated approach using rock mass strength characterisation,large-scale numerical modelling and limit equilibrium methods 被引量:10
5
作者 Paul Schlotfeldt Davide Elmo Brad Panton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期72-90,共19页
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight... Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope. 展开更多
关键词 Rock slopes Discrete fracture network(DFN) Rock mass strength characterisation Numerical modelling Limit equilibrium(LE) methods
在线阅读 下载PDF
Developments of Rill Networks: An Experimental Plot Scale Study
6
作者 Pravat Kumar Shit Gouri Sankar Bhunia Ramkrishna Maiti 《Journal of Water Resource and Protection》 2013年第2期133-141,共9页
Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. P... Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. Present study evaluated the rill network with simulated experiment of treatments on varying slope and rainfall intensity to find out the rill erosion processes and sediment discharge in relation to slope and rainfall intensity. Results showed a significant relationship between the rainfall intensity and sediment yield (r = 0.75). Our results illustrated that due to increase in rainfall intensity represent the development of efficient rill network while, no rill was found with a slope of 20° and a rainfall intensity of 60 mm·h-1. The highest rill length was observed in plot E with 20° slope and 120 mm·h-1 rainfall intensity at 360 minutes. Positive and strong correlation (R2 = 0.734, P 0.001) was observed between the cumulative rainfall intensity and sediment discharge. A longitudinal profile was delineated and showed that the depth and numbers of depressions amplified with time and were more prominent for escalating rainfall intensity for its steeper slopes. Information derived from the study could be applied to estimate longer-term erosion stirring over larger areas possessing parallel landforms. 展开更多
关键词 RILL network slope Gradient RAINFALL Simulation SEDIMENT Yield
暂未订购
基于DNN-NSGA-Ⅱ的高填方加筋边坡参数优化研究
7
作者 查文华 谭雪剑 +3 位作者 许涛 徐源歆 赖斯祾 纪超 《水力发电》 2026年第1期45-51,共7页
以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为... 以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为输入、稳定性响应指标为输出的DNN代理模型;随后,将该代理模型嵌入NSGA-Ⅱ框架,实现以最小化水平位移、加筋材料用量与最大化安全系数为目标的多目标寻优。通过对Pareto前沿解集的分析与典型方案提取,验证所提方法在兼顾边坡安全性与经济性方面的有效性,可为高填方边坡优化设计提供理论支撑与工程参考。 展开更多
关键词 高填方边坡 加筋设计 多目标优化 深度神经网络 非支配排序遗传算法
在线阅读 下载PDF
Assessment of bearing capacity of interfering strip footings located near sloping surface considering artificial neural network technique 被引量:4
8
作者 Rana ACHARYYA Arindam DEY 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2766-2780,共15页
The bearing capacity of interfering footings located near the slope face suffers from reduced bearing capacity due to the formation of the curtailed passive zone. Depending upon the position of the footing, their spac... The bearing capacity of interfering footings located near the slope face suffers from reduced bearing capacity due to the formation of the curtailed passive zone. Depending upon the position of the footing, their spacing and steepness of the slope different extents of bearing capacity reduction can be exhibited. A series of finite element investigation has been done with the aid of Plaxis 3 D v AE.01 to elucidate the influence of various geotechnical and geometrical parameters on the ultimate bearing capacity of interfering surface strip footings located at the crest of the natural soil slope. Based on the large database obtained from the numerical simulation, a6-8-1 Artificial Neural Network architecture has been considered for the assessment of the ultimate bearing capacity of interfering strip footings placed on the crest of natural soil slope. Sensitivity analyses have been conducted to establish the relative significance of the contributory parameters, which exhibited that for the stated problem, apart from shear strength parameters, the setback ratio and spacing of footing are the prime contributory parameters. 展开更多
关键词 Interfering STRIP FOOTING Natural slope FINITE element simulation Artificial Neural network Sensitivity analysis Prediction model
原文传递
Numerical investigations of rock bridge effect on open pit slope stability 被引量:4
9
作者 C.Romer M.Ferentinou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1184-1200,共17页
In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel ... In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel deterministic networks of infinite and finite lengths,ubiquitous joint network model and Veneziano joint network model were used in order to simulate the rock fractures.Materials were modelled based on the generalised Hoek-Brown and equivalent Mohr-Coulomb failure criteria.The parallel deterministic infinite and the ubiquitous joint network models produced lower safety factors.The introduction of rock bridges along discontinuity planes in the parallel deterministic network and Veneziano joint network models significantly contributed to the stability and strain distribution,which should be considered in stability analysis of rock mass in open pit by rock slope practitioners.The results show the significance of joints in hard rock behaviour and the joints should be included in order to attain practical and realistic simulations. 展开更多
关键词 UBIQUITOUS MODEL Veneziano MODEL Parallel DETERMINISTIC joint network Numerical modelling Rock slope STABILITY DISCONTINUITIES Open PIT
在线阅读 下载PDF
Adaptive and intelligent prediction of deformation time series of high rock excavation slope
10
作者 冯夏庭 张治强 徐平 《中国有色金属学会会刊:英文版》 CSCD 1999年第4期842-846,共5页
Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to build mechanical model to describe this nonlinear evoution. A genetic-neural network model has been initially propo... Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to build mechanical model to describe this nonlinear evoution. A genetic-neural network model has been initially proposed for adaptive and intelligent prediction of deformation of slopes, which used artificial neural network to represent nonlinear evoution of sloPe deformation. Number 0f history points of displacement inputted to the model, topologies of neural network, and learning process of model were adaptive and automatically determined using genetic algorithm. The obtained model was thus optimal at global range, and gave predictions of horizontal displacement at succedent three months for the three measurement points with average relative error of 1. 4 % compared with the measured values. Results from one step prediction and multi-step prediction were combined with the measurements. 展开更多
关键词 slope DISPLACEMENT ADAPTIVE GENETIC algorithm NEURAL network
在线阅读 下载PDF
Three Practical Methods for Analyzing Slope Stability 被引量:1
11
作者 XU Shiguang ZHANG Shitao +1 位作者 ZHU Chuanbing Y1N Ying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第5期1083-1088,共6页
Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. ... Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. Because of the geological complexity of the slope, the design and the decision-making of a slope-based engineering is still not practical to rely solely on the theoretical analysis and numerical calculation, but mainly on the experience of the experts. Therefore, it has important practical significance to turn some successful experience into mathematic equations. Based upon the abundant typical slope engineering construction cases in Yunnan, Southwestern China, 3 methods for analyzing the slope stability have been developed in this paper. First of all, the corresponded analogous mathematic equation for analyzing slope stability has been established through case studies. Then, artificial neural network and multivariate regression analysis have also been set up when 7 main influencing factors are adopted. 展开更多
关键词 slope stability analogy of engineering geology multivariate regression analysis artificial neural network
在线阅读 下载PDF
融合角反射器InSAR监测水电工程控制网及边坡稳定
12
作者 侯春尧 陈一鸣 +3 位作者 张洪毅 雷洋 刘杰 李陶 《地理空间信息》 2025年第2期103-107,共5页
传统测绘手段受制于坝区地形和气象条件复杂,使得水电工程控制网稳定性评估复测的周期长、成本高,且对库岸边坡变形监测的时效性不足。通过在近坝区的水电工程控制网点附近布设人工角反射器,并利用高分辨率SAR卫星时序分析技术进行观测... 传统测绘手段受制于坝区地形和气象条件复杂,使得水电工程控制网稳定性评估复测的周期长、成本高,且对库岸边坡变形监测的时效性不足。通过在近坝区的水电工程控制网点附近布设人工角反射器,并利用高分辨率SAR卫星时序分析技术进行观测,结果显示利用角反射器可实现精度为2~3 mm每月一期的控制网点状态评估。利用SBAS-InSAR时序分析技术对坝区内多个滑坡体的变形信号进行了提取,并开展了形变演化过程分析,结果表明提出的结合角反射器和InSAR技术的水电工程控制网基准点稳定性监测方法,为大坝安全监测基准评估提供了新技术手段,可大幅提升电厂安全运营的技术水平并降低人工观测频次。随着国产SAR卫星的进一步成熟,该技术有望能够实现自主可控的水电工程基准网稳定性评估和无人化的坝区滑坡变形安全监测。 展开更多
关键词 INSAR 人工角反射器 水电工程 控制网 时间序列 边坡
在线阅读 下载PDF
基于多传感信息融合和LSTM神经网络的边坡变形预测方法
13
作者 周瑞琪 廖为浩 +4 位作者 汪棋 余莎莎 苑一琳 卢超 李秋锋 《失效分析与预防》 2025年第5期399-409,共11页
为提升公路运营期间的安全性,准确分析判断公路边坡位移状态和变形趋势十分重要。本文提出一种基于多传感信息融合技术的边坡变形预测方法,首先将测斜仪和全球导航卫星系统(GNSS)对公路某一点位采集到的位移数据进行预处理,去除噪声等干... 为提升公路运营期间的安全性,准确分析判断公路边坡位移状态和变形趋势十分重要。本文提出一种基于多传感信息融合技术的边坡变形预测方法,首先将测斜仪和全球导航卫星系统(GNSS)对公路某一点位采集到的位移数据进行预处理,去除噪声等干扰;再将处理后的数据进行融合,利用融合数据对搭建的长短期记忆(LSTM)神经网络模型进行训练;然后通过模型预测未来一段时间边坡的变形趋势,实现对边坡位移情况的有效分析与预测。通过将实际监测数据与预测数据进行对比,以验证该边坡变形预测模型的可靠性。结果表明,预测模型能较准确地反映边坡位移的真实情况和趋势,验证了基于多传感信息融合技术与LSTM神经网络的边坡变形预测方法可为公路边坡安全监测和预警提供有力支持,对保障公路运营安全有重大意义。 展开更多
关键词 多传感器融合 变形预测 边坡监测 长短期记忆网络
在线阅读 下载PDF
融合Slope One的神经网络协同过滤算法研究
14
作者 刘琦 罗玉 《现代计算机(中旬刊)》 2018年第12期23-25,40,共4页
协同过滤算法中由于存在数据稀疏的问题而影响该算法的推荐效果,为此提出一种改进该问题的方法。该方法先通过Slope One算法来填充原始评分矩阵,然后在经填充过后的评分矩阵上通过基于神经网络的协同过滤算法进行推荐。利用Slope One算... 协同过滤算法中由于存在数据稀疏的问题而影响该算法的推荐效果,为此提出一种改进该问题的方法。该方法先通过Slope One算法来填充原始评分矩阵,然后在经填充过后的评分矩阵上通过基于神经网络的协同过滤算法进行推荐。利用Slope One算法进行填充过后的矩阵不仅改善数据稀疏的问题,同时也避免回填数据过于单一的问题。在MovieLens-100K数据集上对本文改进算法进行实验,结果表明,基于评分预测值填充数据后的协同过滤算法有效地缓解数据稀疏性问题,并且有更好的推荐效果。 展开更多
关键词 slopeOne 协同过滤 数据稀疏 矩阵填充 神经网络
在线阅读 下载PDF
基于图神经网络的路基工程边坡防护方案智能决策 被引量:3
15
作者 向子南 谢浩 +1 位作者 姚洪锡 钟晶 《铁道标准设计》 北大核心 2025年第3期91-96,129,共7页
随着数字化改革深入推进与智能化水平不断提高,传统依赖专家经验和历史案例的设计模式正逐步被数据驱动方法所取代。在当前路基工程边坡防护方案设计中,决策主要基于专家经验和历史案例,缺乏相应知识转化机制。如何从大量设计案例中提... 随着数字化改革深入推进与智能化水平不断提高,传统依赖专家经验和历史案例的设计模式正逐步被数据驱动方法所取代。在当前路基工程边坡防护方案设计中,决策主要基于专家经验和历史案例,缺乏相应知识转化机制。如何从大量设计案例中提取并转化知识成为关键问题。针对路基工程边坡防护设计方案的数据特点,提出基于图神经网络的智能决策技术。首先,通过调研大量成熟设计案例,收集和清洗路基设计领域中边坡防护方案数据,并根据专家经验对数据进行规范化处理;其次,结合专家知识构建图本体图神经网络(GNN)对设计数据集进行训练,并验证神经网络对设计结果的预测效果;最后,利用互信息分析图神经网络模型决策过程中的影响因素,并结合实际设计经验揭示其决策逻辑和效果。试验结果表明:(1)GNN在整体路基边坡防护方案数据集中预测准确率达到76.3%,其中常用防护方案准确率可达86.6%;(2)采用互信息算法分析神经网络权重,并结合实际经验进行相关性分析,深入解释决策逻辑,为理解具体设计逻辑提供新视角。本研究可为后续路基工程边坡防护方案智能化设计和决策过程提供重要方法和理论支持。 展开更多
关键词 路基工程 边坡防护方案 图神经网络 智能决策 路基设计 可解释性
在线阅读 下载PDF
水库边坡稳定性远程在线监测系统设计
16
作者 黄金霖 张莉 刘杰 《玉溪师范学院学报》 2025年第3期68-73,共6页
为了准确预测水库边坡稳定性,设计水库边坡稳定性远程在线监测系统.根据影响水库边坡稳定性因素之间的非线性特点,提出利用BP神经网络预测稳定状况,确定预测模型结构.以单片机数据采集终端控制单元为基础,利用GPRS无线传输模块将现场参... 为了准确预测水库边坡稳定性,设计水库边坡稳定性远程在线监测系统.根据影响水库边坡稳定性因素之间的非线性特点,提出利用BP神经网络预测稳定状况,确定预测模型结构.以单片机数据采集终端控制单元为基础,利用GPRS无线传输模块将现场参数传至上位机,在上位机中分析预测结果.结果表明,该远程在线监测系统能够准确预测水库边坡稳定性,稳态误差小于0.02,具有良好的控制效果. 展开更多
关键词 远程在线监测系统 水库边坡稳定性 单片机 GPRS BP神经网络
在线阅读 下载PDF
大坝边坡测斜孔变形自动化监测及变形模式识别研究 被引量:1
17
作者 冉鲁光 周小燕 +4 位作者 李双平 张斌 刘祖强 王华为 李建川 《水电能源科学》 北大核心 2025年第3期147-151,共5页
针对大坝边坡深部位移监测的自动化需求,开发了一种基于物联网的钻孔测斜机器人系统,并创新性地结合一维卷积神经网络模型(1D CNN)实现边坡变形模式的智能预测。通过自主研发的硬件主控板,实现了测斜仪的自动化控制及数据的实时采集和... 针对大坝边坡深部位移监测的自动化需求,开发了一种基于物联网的钻孔测斜机器人系统,并创新性地结合一维卷积神经网络模型(1D CNN)实现边坡变形模式的智能预测。通过自主研发的硬件主控板,实现了测斜仪的自动化控制及数据的实时采集和传输。基于采集的深部位移数据,1D CNN模型自动提取曲线特征并进行分类,识别出多种变形模式(如变形稳定、剪切滑动等),从而对边坡变形趋势进行智能化预测,有效支持地质灾害预警。试验表明,测斜机器人在A、B向的测量精度分别达±0.82、±1.04 mm/30 m,且1D CNN模型在曲线分类上表现优异。该系统通过高精度监测与自动化分析,显著提升了大坝边坡的监测效率和预警水平,具备广泛应用的潜力。 展开更多
关键词 测斜机器人 物联网 变形模式 卷积神经网络 大坝边坡
原文传递
耦合确定性与随机结构面的岩质边坡概率稳定性分析 被引量:1
18
作者 常志璐 向晖 +5 位作者 余琦 钟敏 蒋水华 关宏涛 孟京京 黄发明 《地质科技通报》 北大核心 2025年第2期2-13,共12页
岩质边坡广泛发育确定性结构面和随机结构面,使得岩体具有不连续性和非均质性特征,直接影响边坡的稳定性、变形特征和破坏模式。然而,目前研究较少同时考虑确定性结构面和随机结构面网络对岩质边坡概率稳定性分析和破坏机制的影响。采... 岩质边坡广泛发育确定性结构面和随机结构面,使得岩体具有不连续性和非均质性特征,直接影响边坡的稳定性、变形特征和破坏模式。然而,目前研究较少同时考虑确定性结构面和随机结构面网络对岩质边坡概率稳定性分析和破坏机制的影响。采用离散元方法和结构面网络模拟技术,构建了边坡确定性结构面和随机结构面耦合分析模型,并基于此提出了边坡概率稳定性分析方法,最后以简化岩质边坡模型和锦屏一级水电站左岸坝肩边坡(天然和开挖工况)为例,验证了该方法的有效性。结果表明:(1)提出的方法不仅可以准确模拟确定性结构面与随机结构面网络,而且实现了结构面网络与边坡模型耦合建模;(2)同时考虑确定性结构面和随机结构面边坡概率稳定性分析方法可以获得边坡稳定系数概率分布图,计算结果更全面并符合工程实际;(3)随机结构面网络在开挖边坡工况下对边坡稳定性影响更显著,并且控制边坡的失稳路径和破坏机制。研究成果可为制定岩质边坡开挖和支护方案提供参考,同时为地质灾害防治提供理论依据。 展开更多
关键词 岩质边坡 随机结构面 网络模拟 确定性结构面 概率稳定性分析
在线阅读 下载PDF
基于AcciMap模型的露天煤矿坍塌事故分析 被引量:1
19
作者 陈兆波 李洋 郭亚敏 《煤矿安全》 北大核心 2025年第5期251-256,共6页
以内蒙古阿拉善露天煤矿“2·22”特别重大坍塌事故为例,在识别该事故致因因素基础上,梳理了事故致因因素之间逻辑关系,构建了“2·22”事故的AcciMap模型;运用UCINET分析了导致该事故的关键致因因素和致因链;提出了露天煤矿塌... 以内蒙古阿拉善露天煤矿“2·22”特别重大坍塌事故为例,在识别该事故致因因素基础上,梳理了事故致因因素之间逻辑关系,构建了“2·22”事故的AcciMap模型;运用UCINET分析了导致该事故的关键致因因素和致因链;提出了露天煤矿塌陷事故的防治措施。结果表明:安全监管不力、执法检查不严、利益相关企业违规提供技术服务、违规组织生产并越界开采、安全管理流于形式、频繁爆破高强度剥离采煤是引发事故的关键因素;安全发展理念差→安全生产检查工作实际执行不力→安全监管不力→违规组织生产并越界开采→频繁爆破高强度剥离采煤→边帮岩体滑落坍塌是造成该事故的关键致因链。 展开更多
关键词 露天煤矿 坍塌事故分析 边坡稳定性 复杂网络 致因链
在线阅读 下载PDF
基于深度学习的大坝边坡深部变形时空预测模型研究 被引量:1
20
作者 周小燕 李双平 +5 位作者 冉鲁光 苏振 张斌 刘祖强 苏森南 史波 《中国农村水利水电》 北大核心 2025年第7期182-187,195,共7页
大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基... 大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基于深度学习模型的边坡测斜孔变形时空预测方法。利用某水电边坡测斜孔变形监测数据,对监测数据展开系统性分析。预测结果表明,GCN、TCN、STGCN和Transformer四种模型均适用于边坡时空预测,其中TCN模型相较于其他3种时空预测模型展现出了更高的预测精度和可靠性,评估指标MAE、MSE、RMSE、MAPE和R2分别为1.007、2.2082、1.486、102.40%和0.9884。此外,4个模型的不同日期的预测结果与实测值的误差分布在0~4 mm之间,验证了4个模型在边坡测斜孔变形时空预测的准确性和有效性。研究结果为库区边坡变形时空短期预测提供了新思路。 展开更多
关键词 深度学习 大坝边坡变形 时空预测模型 时序卷积网络模型
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部