This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s...This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.展开更多
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me...New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.展开更多
The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking...The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. P...Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. Present study evaluated the rill network with simulated experiment of treatments on varying slope and rainfall intensity to find out the rill erosion processes and sediment discharge in relation to slope and rainfall intensity. Results showed a significant relationship between the rainfall intensity and sediment yield (r = 0.75). Our results illustrated that due to increase in rainfall intensity represent the development of efficient rill network while, no rill was found with a slope of 20° and a rainfall intensity of 60 mm·h-1. The highest rill length was observed in plot E with 20° slope and 120 mm·h-1 rainfall intensity at 360 minutes. Positive and strong correlation (R2 = 0.734, P 0.001) was observed between the cumulative rainfall intensity and sediment discharge. A longitudinal profile was delineated and showed that the depth and numbers of depressions amplified with time and were more prominent for escalating rainfall intensity for its steeper slopes. Information derived from the study could be applied to estimate longer-term erosion stirring over larger areas possessing parallel landforms.展开更多
The bearing capacity of interfering footings located near the slope face suffers from reduced bearing capacity due to the formation of the curtailed passive zone. Depending upon the position of the footing, their spac...The bearing capacity of interfering footings located near the slope face suffers from reduced bearing capacity due to the formation of the curtailed passive zone. Depending upon the position of the footing, their spacing and steepness of the slope different extents of bearing capacity reduction can be exhibited. A series of finite element investigation has been done with the aid of Plaxis 3 D v AE.01 to elucidate the influence of various geotechnical and geometrical parameters on the ultimate bearing capacity of interfering surface strip footings located at the crest of the natural soil slope. Based on the large database obtained from the numerical simulation, a6-8-1 Artificial Neural Network architecture has been considered for the assessment of the ultimate bearing capacity of interfering strip footings placed on the crest of natural soil slope. Sensitivity analyses have been conducted to establish the relative significance of the contributory parameters, which exhibited that for the stated problem, apart from shear strength parameters, the setback ratio and spacing of footing are the prime contributory parameters.展开更多
In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel ...In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel deterministic networks of infinite and finite lengths,ubiquitous joint network model and Veneziano joint network model were used in order to simulate the rock fractures.Materials were modelled based on the generalised Hoek-Brown and equivalent Mohr-Coulomb failure criteria.The parallel deterministic infinite and the ubiquitous joint network models produced lower safety factors.The introduction of rock bridges along discontinuity planes in the parallel deterministic network and Veneziano joint network models significantly contributed to the stability and strain distribution,which should be considered in stability analysis of rock mass in open pit by rock slope practitioners.The results show the significance of joints in hard rock behaviour and the joints should be included in order to attain practical and realistic simulations.展开更多
Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to build mechanical model to describe this nonlinear evoution. A genetic-neural network model has been initially propo...Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to build mechanical model to describe this nonlinear evoution. A genetic-neural network model has been initially proposed for adaptive and intelligent prediction of deformation of slopes, which used artificial neural network to represent nonlinear evoution of sloPe deformation. Number 0f history points of displacement inputted to the model, topologies of neural network, and learning process of model were adaptive and automatically determined using genetic algorithm. The obtained model was thus optimal at global range, and gave predictions of horizontal displacement at succedent three months for the three measurement points with average relative error of 1. 4 % compared with the measured values. Results from one step prediction and multi-step prediction were combined with the measurements.展开更多
Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. ...Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. Because of the geological complexity of the slope, the design and the decision-making of a slope-based engineering is still not practical to rely solely on the theoretical analysis and numerical calculation, but mainly on the experience of the experts. Therefore, it has important practical significance to turn some successful experience into mathematic equations. Based upon the abundant typical slope engineering construction cases in Yunnan, Southwestern China, 3 methods for analyzing the slope stability have been developed in this paper. First of all, the corresponded analogous mathematic equation for analyzing slope stability has been established through case studies. Then, artificial neural network and multivariate regression analysis have also been set up when 7 main influencing factors are adopted.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51278217)
文摘This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.
基金supported by the Research Grants Council of the Hong Kong SAR Government(Grant Nos.16202716 and C6012-15G)
文摘New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.
文摘The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
文摘Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. Present study evaluated the rill network with simulated experiment of treatments on varying slope and rainfall intensity to find out the rill erosion processes and sediment discharge in relation to slope and rainfall intensity. Results showed a significant relationship between the rainfall intensity and sediment yield (r = 0.75). Our results illustrated that due to increase in rainfall intensity represent the development of efficient rill network while, no rill was found with a slope of 20° and a rainfall intensity of 60 mm·h-1. The highest rill length was observed in plot E with 20° slope and 120 mm·h-1 rainfall intensity at 360 minutes. Positive and strong correlation (R2 = 0.734, P 0.001) was observed between the cumulative rainfall intensity and sediment discharge. A longitudinal profile was delineated and showed that the depth and numbers of depressions amplified with time and were more prominent for escalating rainfall intensity for its steeper slopes. Information derived from the study could be applied to estimate longer-term erosion stirring over larger areas possessing parallel landforms.
文摘The bearing capacity of interfering footings located near the slope face suffers from reduced bearing capacity due to the formation of the curtailed passive zone. Depending upon the position of the footing, their spacing and steepness of the slope different extents of bearing capacity reduction can be exhibited. A series of finite element investigation has been done with the aid of Plaxis 3 D v AE.01 to elucidate the influence of various geotechnical and geometrical parameters on the ultimate bearing capacity of interfering surface strip footings located at the crest of the natural soil slope. Based on the large database obtained from the numerical simulation, a6-8-1 Artificial Neural Network architecture has been considered for the assessment of the ultimate bearing capacity of interfering strip footings placed on the crest of natural soil slope. Sensitivity analyses have been conducted to establish the relative significance of the contributory parameters, which exhibited that for the stated problem, apart from shear strength parameters, the setback ratio and spacing of footing are the prime contributory parameters.
文摘In this study,the effect of rock bridges on rock slope stability was investigated by incorporating nonpersistent joint networks in numerical models,and the critical profiles of an open pit mine were analysed.Parallel deterministic networks of infinite and finite lengths,ubiquitous joint network model and Veneziano joint network model were used in order to simulate the rock fractures.Materials were modelled based on the generalised Hoek-Brown and equivalent Mohr-Coulomb failure criteria.The parallel deterministic infinite and the ubiquitous joint network models produced lower safety factors.The introduction of rock bridges along discontinuity planes in the parallel deterministic network and Veneziano joint network models significantly contributed to the stability and strain distribution,which should be considered in stability analysis of rock mass in open pit by rock slope practitioners.The results show the significance of joints in hard rock behaviour and the joints should be included in order to attain practical and realistic simulations.
文摘Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to build mechanical model to describe this nonlinear evoution. A genetic-neural network model has been initially proposed for adaptive and intelligent prediction of deformation of slopes, which used artificial neural network to represent nonlinear evoution of sloPe deformation. Number 0f history points of displacement inputted to the model, topologies of neural network, and learning process of model were adaptive and automatically determined using genetic algorithm. The obtained model was thus optimal at global range, and gave predictions of horizontal displacement at succedent three months for the three measurement points with average relative error of 1. 4 % compared with the measured values. Results from one step prediction and multi-step prediction were combined with the measurements.
文摘Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. Because of the geological complexity of the slope, the design and the decision-making of a slope-based engineering is still not practical to rely solely on the theoretical analysis and numerical calculation, but mainly on the experience of the experts. Therefore, it has important practical significance to turn some successful experience into mathematic equations. Based upon the abundant typical slope engineering construction cases in Yunnan, Southwestern China, 3 methods for analyzing the slope stability have been developed in this paper. First of all, the corresponded analogous mathematic equation for analyzing slope stability has been established through case studies. Then, artificial neural network and multivariate regression analysis have also been set up when 7 main influencing factors are adopted.