The plane strain asymmetrical rolling was analyzed using slab method. The contact arc was replaced by parabola, and the constant surface friction status was adopted during the analysis. The deformation area was divide...The plane strain asymmetrical rolling was analyzed using slab method. The contact arc was replaced by parabola, and the constant surface friction status was adopted during the analysis. The deformation area was divided into three zones according to the direction of the friction. Then, the three zones were studied, respectively. A rolling force model and a rolling torque model were developed based on the analysis, and they were used to analyze the influ- ence of asymmetrical rolling factors on deformation area and unit pressure if they had good precision which was determined by comparing the calculated results with the measured ones.展开更多
3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Choles...3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.展开更多
The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is develope...The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.展开更多
In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong co...In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.展开更多
Considering the characteristics of large cylindrical shell rolling, such as double driving rolls, asymmetrical rolling and huge workpiece, a slab method was developed to establish the rolling force model. In this mode...Considering the characteristics of large cylindrical shell rolling, such as double driving rolls, asymmetrical rolling and huge workpiece, a slab method was developed to establish the rolling force model. In this model, the non- uniform normal and shear stresses and the upper and lower surface temperatures of the workpiece were taken into ac- count. Moreover, the flow stress model, considering the dynamic recovery and dynamic recrystallization behaviors of the material, was established. The rolling pressure distribution, the rolling force, the rolling torque and the neutral points could be calculated quickly and easily by the roiling force model. The predicted results were shown to be in good agreement with the measured values, which indicated that the model can satisfy the requirement of industrial application.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50104006)National Key Technology Research and Development Program of China(2006BAE03A08)
文摘The plane strain asymmetrical rolling was analyzed using slab method. The contact arc was replaced by parabola, and the constant surface friction status was adopted during the analysis. The deformation area was divided into three zones according to the direction of the friction. Then, the three zones were studied, respectively. A rolling force model and a rolling torque model were developed based on the analysis, and they were used to analyze the influ- ence of asymmetrical rolling factors on deformation area and unit pressure if they had good precision which was determined by comparing the calculated results with the measured ones.
基金supported by Huo Yingdong Young Teachers Foundation,Ministry of State Education of ChinaNational Natural Science Foundation of China(No.59904003).
文摘3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.
文摘The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.
基金supported by National Scientific Foundation of China with Grant No. 41774067
文摘In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.
基金Item Sponsored by National Science and Technology Major Project of China(2011ZX04002-101)National Science and Technology Support Plan of China(2011BAF15B02)National Natural Science Foundation of China(51305388)
文摘Considering the characteristics of large cylindrical shell rolling, such as double driving rolls, asymmetrical rolling and huge workpiece, a slab method was developed to establish the rolling force model. In this model, the non- uniform normal and shear stresses and the upper and lower surface temperatures of the workpiece were taken into ac- count. Moreover, the flow stress model, considering the dynamic recovery and dynamic recrystallization behaviors of the material, was established. The rolling pressure distribution, the rolling force, the rolling torque and the neutral points could be calculated quickly and easily by the roiling force model. The predicted results were shown to be in good agreement with the measured values, which indicated that the model can satisfy the requirement of industrial application.