We present old and new results about the size function of a set providing simple and complete proofs using basic tools of general topology. For instance, the decomposition of the size function is given and, under the ...We present old and new results about the size function of a set providing simple and complete proofs using basic tools of general topology. For instance, the decomposition of the size function is given and, under the calmness property of a set, the right continuity of the size function with respect to both arguments is established. Finally, a classification of its points of discontinuity is given.展开更多
In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrin...In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.展开更多
The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stabili...The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.展开更多
Water Vapor Chemistry" as a new science was discovered and established from trace analysis in Gu’s laboratory(Gu, 1991; Gu et al., 1991). Gu’s Function shows that the trace metal ion concentration in water vapo...Water Vapor Chemistry" as a new science was discovered and established from trace analysis in Gu’s laboratory(Gu, 1991; Gu et al., 1991). Gu’s Function shows that the trace metal ion concentration in water vapor has positive correlation to"specific electron affinity constant"last ionization potential Iz/ion valence Z and negative correlation to ion volume V and coordination number N(Gu, 1994). Gu’s Func-tion C=f[(Iz/Z)/VN]of the bond parameter in water vapor chemistry corresponds to the potential energy function Z’ e2/r in the Schrodinger Equation of quantum chemistry. In different ions with the same 2+ charge, the ion concentration of water-water vapor transfer may be much different. This shows that the 2+ charge of different ions has different attractive force (hydration force). This different attractive force of the charge can be scaled with the relative energy or charge size from Gu’s Function.展开更多
Background:A number of hypotheses and theories,such as the Janzen-Connell hypothesis,have been proposed to explain the natural maintenance of biodiversity in tropical and temperate forest ecosystems.However,to date th...Background:A number of hypotheses and theories,such as the Janzen-Connell hypothesis,have been proposed to explain the natural maintenance of biodiversity in tropical and temperate forest ecosystems.However,to date the details of the processes behind this natural maintenance are still unclear.Recently two new nearest-neighbour characteristics were proposed and in this paper we demonstrate how they can contribute to a better understanding of the ontogenesis of global forest structure from localised neighbourhoods.Methods:We applied the new species and size segregation functions together with appropriate test procedures to four example woodland data sets from China at Daqingshan,Jiaohe,Jiulongshan and Xiaolongshan forest regions.In addition we quantified the morphology of the new characteristics and modelled a neighbourhood allometric coefficient linking the two functions.Results:The results revealed quite different species segregation patterns with both conspecific and heterospecific attraction.We found these to be generally matched by equivalent size segregation patterns of attraction of similar and different sizes.It was straightforward to model the size segregation function from the knowledge of the species segregation function by estimating a neighbourhood allometric coefficient.Conclusions:The new characteristics have helped to quantify the extent and rate of decline of neighbourhood interactions in terms of spatial species and size diversity.Through the allometric neighbourhood coefficient the analysis highlighted once more how closely related species and size segregation are,thus supporting the minglingsize hypothesis.Using both a traditional and a restricted random-labelling test has provided a valuable tool for understanding the exact nature of species-mingling and size-inequality relationships.展开更多
Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosi...Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.展开更多
Featuring excellent chemical stability and tunable pore aperture,zirconium-based metal-organic framework(Zr-MOF) represented by UiO-66 is promising for liquid molecular separation.Nevertheless,it is challenging to ach...Featuring excellent chemical stability and tunable pore aperture,zirconium-based metal-organic framework(Zr-MOF) represented by UiO-66 is promising for liquid molecular separation.Nevertheless,it is challenging to achieve high ion separation performance in UiO-66 membrane owing to the non-ideal pore environment.Here,we present a ligand engineering strategy to synergistically regulate pore size and functionality in Zr-MOF membrane for mono-/di-valent ions separation.This is achieved by positioning the amino group(–NH_(2)) in the ligand of the UiO-66 framework.The influences of amino groups on the lattice defects and pore functionality,as well as the ion separation performance of MOF membranes,were investigated systematically.Benefiting the properly narrowed pore size and enhanced repulsive force towards divalent ions,the optimized Zr-MOF membrane displayed excellent mono-/di-valent ions separation performance with monovalent ions permeation rate of0.36–0.55 mol m^(-2)h^(-1)and mono-/di-valent ions selectivities of 64–98,far beyond the separation performance of state-of-thearts membranes.This work provides a facile approach to precisely construct a nanosized space in crystalline membranes for molecular separation,energy conversion,and storage.展开更多
Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are e...Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.展开更多
The purpose of this paper is to introduce a size biased Lindley distribution which is a special case of weighted distributions. Weighted distributions have practical significance where some types of biased occur in a ...The purpose of this paper is to introduce a size biased Lindley distribution which is a special case of weighted distributions. Weighted distributions have practical significance where some types of biased occur in a density function, i.e. probability is proportional to the size of the variate, that’s why the proposed version of size biased Lindley is designed for such situations more reasonably and more precisely. Principle properties of the density function are also discussed in this paper such as moments, measure of skewness, kurtosis, moment generating function, characteristics generating function, coefficient of variation, survival function and hazard function which are derived for understanding the structure of the proposed distribution more briefly.展开更多
The International Software Benchmarking and Standards Group (ISBSG) data-base was used to build estimation models for estimating software functional test effort. The analysis of the data revealed three test productivi...The International Software Benchmarking and Standards Group (ISBSG) data-base was used to build estimation models for estimating software functional test effort. The analysis of the data revealed three test productivity patterns representing economies or diseconomies of scale and these patterns served as a basis for investigating the characteristics of the corresponding projects. Three groups of projects related to the three different productivity patterns, characterized by domain, team size, elapsed time and rigor of verification and validation carried out during development, were found to be statistically significant. Within each project group, the variations in test effort can be explained, in addition to functional size, by 1) the processes executed during development, and 2) the processes adopted for testing. Portfolios of estimation models were built using combinations of the three independent variables. Performance of the estimation models built using the function point method innovated by the Common Software Measurement International Consortium (COSMIC) known as COSMIC Function Points, and the one advocated by the International Function Point Users Group (IFPUG) known as IFPUG Function Points, were compared to evaluate the impact of these respective sizing methods on test effort estimation.展开更多
A theoretical study on oligopeptide chains of glycine-alanine by density functional theory(DFT) is given in this paper. Raman spectra of the oligopeptide chains are examined. The geometric structures, frontier orbit...A theoretical study on oligopeptide chains of glycine-alanine by density functional theory(DFT) is given in this paper. Raman spectra of the oligopeptide chains are examined. The geometric structures, frontier orbital, energy gap, atomic charge distribution, density of states and chemical activity of the side chain are studied at the B3LYP/6-31G(d) level. Results show that, with the number of residues increasing, vibrations of typical functional groups present Raman frequency shift, and the energy gap is gradually reduced. The HOMO and LUMO focus on the amino and carboxyl at the ends of oligopeptides. It is helpful for oligopeptides to self-assemble into chains. In addition, different residues(glycine or alanine) at the ends of chains result in the even-odd effect of orbital energy in the growth process. The size effects of physical and chemical properties only exist when the oligopeptides are shorter, and the phenomenon disappeared as the chain continues to grow.展开更多
为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩...为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。展开更多
The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is l...The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation.展开更多
Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The e...Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The electrochemical behaviors of melamine (MM) were investigated on COOH-NMPs/GCE by cyclic voltammetry (CV) in both cases of DNA in the solution and immobilized on the electrode surface. The electron transfer coefficient (a) and the rate constant (ks) kept unchanged in the absence and presence of DNA. Based on the electrochemical properties of the interaction of MM on the surface of the DNA/COOH-NMPs/GCE, a direct method for the determination of MM in liquid milk was established. The detection limit of this method was 2.0 ng·L﹣1, with average recoveries at 95.9% - 104.2% and RSD at 4.5% - 8.2%. The proposed method was provided to have a good accuracy, high stability and good reproducibility with a simple and environmental friendly process. 10 kinds of liquid milk samples bought from the market randomly were tested, and only 1 of them was found at relatively low level of MM residue with the amount of 0.12 ug·L﹣1.展开更多
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ...Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.展开更多
文摘We present old and new results about the size function of a set providing simple and complete proofs using basic tools of general topology. For instance, the decomposition of the size function is given and, under the calmness property of a set, the right continuity of the size function with respect to both arguments is established. Finally, a classification of its points of discontinuity is given.
文摘In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.
文摘The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.
文摘Water Vapor Chemistry" as a new science was discovered and established from trace analysis in Gu’s laboratory(Gu, 1991; Gu et al., 1991). Gu’s Function shows that the trace metal ion concentration in water vapor has positive correlation to"specific electron affinity constant"last ionization potential Iz/ion valence Z and negative correlation to ion volume V and coordination number N(Gu, 1994). Gu’s Func-tion C=f[(Iz/Z)/VN]of the bond parameter in water vapor chemistry corresponds to the potential energy function Z’ e2/r in the Schrodinger Equation of quantum chemistry. In different ions with the same 2+ charge, the ion concentration of water-water vapor transfer may be much different. This shows that the 2+ charge of different ions has different attractive force (hydration force). This different attractive force of the charge can be scaled with the relative energy or charge size from Gu’s Function.
基金partly supported by the Guangxi Innovation Driven Development Project(No.AA17204087-8)funded by the National Natural Science Foundation of China(project No.31670640)。
文摘Background:A number of hypotheses and theories,such as the Janzen-Connell hypothesis,have been proposed to explain the natural maintenance of biodiversity in tropical and temperate forest ecosystems.However,to date the details of the processes behind this natural maintenance are still unclear.Recently two new nearest-neighbour characteristics were proposed and in this paper we demonstrate how they can contribute to a better understanding of the ontogenesis of global forest structure from localised neighbourhoods.Methods:We applied the new species and size segregation functions together with appropriate test procedures to four example woodland data sets from China at Daqingshan,Jiaohe,Jiulongshan and Xiaolongshan forest regions.In addition we quantified the morphology of the new characteristics and modelled a neighbourhood allometric coefficient linking the two functions.Results:The results revealed quite different species segregation patterns with both conspecific and heterospecific attraction.We found these to be generally matched by equivalent size segregation patterns of attraction of similar and different sizes.It was straightforward to model the size segregation function from the knowledge of the species segregation function by estimating a neighbourhood allometric coefficient.Conclusions:The new characteristics have helped to quantify the extent and rate of decline of neighbourhood interactions in terms of spatial species and size diversity.Through the allometric neighbourhood coefficient the analysis highlighted once more how closely related species and size segregation are,thus supporting the minglingsize hypothesis.Using both a traditional and a restricted random-labelling test has provided a valuable tool for understanding the exact nature of species-mingling and size-inequality relationships.
基金Supported by the National Sci-Tech Support Plan(2015BAD21B05)China Scholarship Council(201408320127)
文摘Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.
基金supported by the National Key Research and Development Project of China (2023YFB3811000)the National Natural Science Foundation of China (22308151,21921006,22278210)the Natural Science Foundation of Jiangsu Province (BK20232010)。
文摘Featuring excellent chemical stability and tunable pore aperture,zirconium-based metal-organic framework(Zr-MOF) represented by UiO-66 is promising for liquid molecular separation.Nevertheless,it is challenging to achieve high ion separation performance in UiO-66 membrane owing to the non-ideal pore environment.Here,we present a ligand engineering strategy to synergistically regulate pore size and functionality in Zr-MOF membrane for mono-/di-valent ions separation.This is achieved by positioning the amino group(–NH_(2)) in the ligand of the UiO-66 framework.The influences of amino groups on the lattice defects and pore functionality,as well as the ion separation performance of MOF membranes,were investigated systematically.Benefiting the properly narrowed pore size and enhanced repulsive force towards divalent ions,the optimized Zr-MOF membrane displayed excellent mono-/di-valent ions separation performance with monovalent ions permeation rate of0.36–0.55 mol m^(-2)h^(-1)and mono-/di-valent ions selectivities of 64–98,far beyond the separation performance of state-of-thearts membranes.This work provides a facile approach to precisely construct a nanosized space in crystalline membranes for molecular separation,energy conversion,and storage.
基金financially supported by the National Natural Science Foundation of China(No.51376095)the Jiangsu Province Environmental Research Projects(No.2014049)
文摘Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.
文摘The purpose of this paper is to introduce a size biased Lindley distribution which is a special case of weighted distributions. Weighted distributions have practical significance where some types of biased occur in a density function, i.e. probability is proportional to the size of the variate, that’s why the proposed version of size biased Lindley is designed for such situations more reasonably and more precisely. Principle properties of the density function are also discussed in this paper such as moments, measure of skewness, kurtosis, moment generating function, characteristics generating function, coefficient of variation, survival function and hazard function which are derived for understanding the structure of the proposed distribution more briefly.
文摘The International Software Benchmarking and Standards Group (ISBSG) data-base was used to build estimation models for estimating software functional test effort. The analysis of the data revealed three test productivity patterns representing economies or diseconomies of scale and these patterns served as a basis for investigating the characteristics of the corresponding projects. Three groups of projects related to the three different productivity patterns, characterized by domain, team size, elapsed time and rigor of verification and validation carried out during development, were found to be statistically significant. Within each project group, the variations in test effort can be explained, in addition to functional size, by 1) the processes executed during development, and 2) the processes adopted for testing. Portfolios of estimation models were built using combinations of the three independent variables. Performance of the estimation models built using the function point method innovated by the Common Software Measurement International Consortium (COSMIC) known as COSMIC Function Points, and the one advocated by the International Function Point Users Group (IFPUG) known as IFPUG Function Points, were compared to evaluate the impact of these respective sizing methods on test effort estimation.
基金Supported by the National Natural Science Foundation of China(No.60878063)the Program from Traditional Chinese Medicine Bureau of Guangdong Province(No.2008233)
文摘A theoretical study on oligopeptide chains of glycine-alanine by density functional theory(DFT) is given in this paper. Raman spectra of the oligopeptide chains are examined. The geometric structures, frontier orbital, energy gap, atomic charge distribution, density of states and chemical activity of the side chain are studied at the B3LYP/6-31G(d) level. Results show that, with the number of residues increasing, vibrations of typical functional groups present Raman frequency shift, and the energy gap is gradually reduced. The HOMO and LUMO focus on the amino and carboxyl at the ends of oligopeptides. It is helpful for oligopeptides to self-assemble into chains. In addition, different residues(glycine or alanine) at the ends of chains result in the even-odd effect of orbital energy in the growth process. The size effects of physical and chemical properties only exist when the oligopeptides are shorter, and the phenomenon disappeared as the chain continues to grow.
文摘为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002 and 2019ZA052011)。
文摘The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation.
文摘Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The electrochemical behaviors of melamine (MM) were investigated on COOH-NMPs/GCE by cyclic voltammetry (CV) in both cases of DNA in the solution and immobilized on the electrode surface. The electron transfer coefficient (a) and the rate constant (ks) kept unchanged in the absence and presence of DNA. Based on the electrochemical properties of the interaction of MM on the surface of the DNA/COOH-NMPs/GCE, a direct method for the determination of MM in liquid milk was established. The detection limit of this method was 2.0 ng·L﹣1, with average recoveries at 95.9% - 104.2% and RSD at 4.5% - 8.2%. The proposed method was provided to have a good accuracy, high stability and good reproducibility with a simple and environmental friendly process. 10 kinds of liquid milk samples bought from the market randomly were tested, and only 1 of them was found at relatively low level of MM residue with the amount of 0.12 ug·L﹣1.
文摘Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.