We establish the existence of positive periodic solutions of the second-order singular coupled systems{x′′+ p_1(t)x′+ q_1(t)x = f_1(t, y(t)) + c_1(t),y′′+ p_2(t)y′+ q_2(t)y = f_2(t, x(t)) ...We establish the existence of positive periodic solutions of the second-order singular coupled systems{x′′+ p_1(t)x′+ q_1(t)x = f_1(t, y(t)) + c_1(t),y′′+ p_2(t)y′+ q_2(t)y = f_2(t, x(t)) + c_2(t),where pi, qi, ci ∈ C(R/T Z; R), i = 1, 2; f_1, f_2 ∈ C(R/T Z ×(0, ∞), R) and may be singular near the zero. The proof relies on Schauder's fixed point theorem and anti-maximum principle.Our main results generalize and improve those available in the literature.展开更多
In this paper, we are concerned the structure of rapidly decaying singularpositive solutions of △u+ f(u) = 0 in Re(n > 2) and showed that, for any c > 0,there exists a rapidly decaying singular positive solution.
基金Supported by the Scientific Research Funds for the Ningxia Universities(Grant No.NGY2015141)
文摘We establish the existence of positive periodic solutions of the second-order singular coupled systems{x′′+ p_1(t)x′+ q_1(t)x = f_1(t, y(t)) + c_1(t),y′′+ p_2(t)y′+ q_2(t)y = f_2(t, x(t)) + c_2(t),where pi, qi, ci ∈ C(R/T Z; R), i = 1, 2; f_1, f_2 ∈ C(R/T Z ×(0, ∞), R) and may be singular near the zero. The proof relies on Schauder's fixed point theorem and anti-maximum principle.Our main results generalize and improve those available in the literature.
文摘In this paper, we are concerned the structure of rapidly decaying singularpositive solutions of △u+ f(u) = 0 in Re(n > 2) and showed that, for any c > 0,there exists a rapidly decaying singular positive solution.