High shear wet granulation(HSWG) is one of the most poorly understood processes with known difficulties in optimization and scale up. The purpose of the current study is to develop a DEM model which can be applied und...High shear wet granulation(HSWG) is one of the most poorly understood processes with known difficulties in optimization and scale up. The purpose of the current study is to develop a DEM model which can be applied under dynamic process conditions with high predictive capacity to improve process insight. The DEM model is used to predict agglomeration as a function of impeller speed and liquid addition rate in a high shear wet granulator. The DEM model tracks dynamic formation and breakage of liquid bridges between particles as liquid binder in the system is added, and corrects for the change in material properties as a function of the binder content.展开更多
The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol(PVA)as binder by spray granulation method,The electromagnetic pa...The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol(PVA)as binder by spray granulation method,The electromagnetic parameters of Fe and C composite particles were analyzed by vector network.The complex permittivity and magnetic permeability of Fe and C composite particles matched well with increasing C nanoparticle content,and then the microwave loss property was improved.A minimum reflection loss(RL)of-42.7 dB at 3.68 GHz for a composite with 4.6 mm in thickness can be obtained when the content ratio of the C nanoparticles,the modified Fe nanoparticles and the PVA is 21:49:30(Sample 3).展开更多
In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In...In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In particular,an Euler-Euler two-phase flow model is used to analyze the dynamics of both SiC particles and air.The numerical results show that by setting a certain reverse rotating speed of the rotating chamber,the accumulation of SiC particles on the wall can be improved,i.e.,their direction of motion in proximity to the wall can be changed and particles can be forced to re-join the granulation process.Experimental tests conducted to verify the reliability of the numerical findings,demonstrate that when the reverse rotating speed of the rotating chamber is 4 r/min,the sphericity of SiC particles in the rotating chamber is the highest and the fluidity is the best possible one.展开更多
In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-ph...In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-phase flow is analyzed using a VOF(Volume of Fraction)method together with the modified realizable k-εturbulence model.The influence of nozzle orifice shape on velocity distribution,pressure distribution is studied.The results show that the pressure difference in a convergent conical nozzle is the largest with a hollow air core being formed in the nozzle.The corresponding velocity of atomized liquid at nozzle orifice is the largest.Using a self-designed atomization experiment platform,the velocity and pressure of atomized liquid and the spray cone angle are measured for three nozzles with different orifice shapes.The micro-morphology of Si3N4 particles is also determined.These data confirm the correctness of numerical simulation.Considering atomization performance of the nozzle,the contraction conical nozzle is more suitable for the atomization of Si3N4 in practical production based on the dry granulation approach.展开更多
A novel method isolated microorganisms in soil granule was built. The key steps included: repeated elutriation of soil by sterilized water, inoculation on the plates with the elutriated sediments, incubation of the p...A novel method isolated microorganisms in soil granule was built. The key steps included: repeated elutriation of soil by sterilized water, inoculation on the plates with the elutriated sediments, incubation of the plates and isolation of the actinomycetes by using selected culture medium. We formulated that most microflora included the dominant actinomycetes in the soil were carried away with the sterilized water in the elutriation procedure, some rare actinomycetes and few other microflora included bacteria were remained in the elutriated sediments, the other microflora were excluded to grew into colonies on the plates by using selective culture medium for actinomycetes in the elutriated sediments. Results showed the supposition. Non-streptomycete actinomycetes were isolated both from black soil samples from Chinese northeast area and compost samples from Chinese central area. Soil fungi in granule were isolated by using the selective conditions to favor fungi. The results showed that the method was effective展开更多
This paper deals with a comparative research between two processes of granulation, namely mini-pelletized sintering (MPS) and hybrid pelletized sintering (HPS), focusing on aspects such as the balling effect, prod...This paper deals with a comparative research between two processes of granulation, namely mini-pelletized sintering (MPS) and hybrid pelletized sintering (HPS), focusing on aspects such as the balling effect, production, quality, and mineralography and metallurgical performance of sinter. The results indicate that both methods can result in a satisfying capability in balling effect and metallurgical performance of sinter, qualified to meet the plant production requirements, but when the granulation time and granulating moisture are set to around 6 minutes and 7.0% respectively, MPS is better than HPS.展开更多
Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(M...Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(MFSM)method.Methods This study established the MFSM method.To demonstrate its effectiveness,we applied this novel approach to analyze Danxi Granules(丹膝颗粒,DXG)and its constituent herbal materials.To begin with,the ultra-performance liquid chromatography(UPLC)was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materi-als.Next,the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units.Then,we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment(TQSM)parameters,information entropy and information amount,along with their relative standard deviation(RSD).Finally,we compared the TQSM parameters,information entropy and infor-mation amount,and their RSD between the traditional and novel fingerprints to validate the new analytical method.Results The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method.Before integration,the ranges of the peak number,three TQSM parameters,information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07−209.73,9390−183064μv·s,5.928−21.33 min,22.62−106.69 min^(2),4.230−6.539,and 50530−974186μv·s,respectively.After integration,the ranges of these parameters were 10.00−88.00,9390−183064μv·s,5.951−22.02 min,22.27−104.73 min^(2),2.223−5.277,and 38159−807200μv·s,respectively.Correspondingly,the RSD of all the aforementioned pa-rameters before integration were 2.12%−9.15%,6.04%−49.78%,1.15%−23.10%,3.97%−25.79%,1.49%−19.86%,and 6.64%−51.20%,respectively.However,after integration,they changed to 0.00%,6.04%−49.87%,1.73%−23.02%,3.84%−26.85%,1.17%−16.54%,and 6.40%−48.59%,respectively.The results demonstrated that in the newly integrated fingerprint,the analytical units of constituent herbal materials,information entropy and information amount were significantly reduced(P<0.05),while the TQSM parameters remained unchanged(P>0.05).Additionally,the RSD of the TQSM parameters,information entropy,and information amount didn’t show significant difference before and after integration(P>0.05),but the RSD of the number and area of the integrated analytical units significantly decreased(P<0.05).Conclusion The MFSM method could reduce the analytical units of constituent herbal mate-rials while maintain the properties and variability from their original fingerprint.Thus,it could serve as a feasible and reliable tool to reduce difficulties in analyzing multi-compo-nents within CMMs and facilitating the evaluation of their quality.展开更多
The Co content dependence of crystal structure and specific magnetization of Fe1-xCox-SiO2granular solid prepared by the sol-gel method have been studied. It is found that the crystal structure, Iattice parameter and ...The Co content dependence of crystal structure and specific magnetization of Fe1-xCox-SiO2granular solid prepared by the sol-gel method have been studied. It is found that the crystal structure, Iattice parameter and specific magnetization of the FeCo alloy particles depend on the Co content.展开更多
智能网联技术是未来智能交通系统的发展趋势,然而智能网联车辆(Connected and Automated Vehicle,CAV)与人工驾驶车辆(Human-Driven Vehicle,HDV)共同构成的新型混合交通流将长期存在。如何充分利用CAV的网联及可管控特性,实现交通运行...智能网联技术是未来智能交通系统的发展趋势,然而智能网联车辆(Connected and Automated Vehicle,CAV)与人工驾驶车辆(Human-Driven Vehicle,HDV)共同构成的新型混合交通流将长期存在。如何充分利用CAV的网联及可管控特性,实现交通运行优化和道路资源利用效率提升,是新型混合交通流亟待解决的重要问题。现有混合交通流专用车道管控研究侧重于不同交通需求和CAV渗透率下的路权分配,并未充分考虑CAV与交通管控系统的双向交互特性。针对上述不足,提出了“粒流协同专用车道”概念,简称粒流协同道。粒流协同道管控方法包括管控区域设置、车道设置以及粒流协同策略三部分。粒流协同策略的管控对象是CAV车流和CAV个体,旨在通过集中或分布式CAV管控实现道路管理优化。针对高速公路常规场景,设置单一管控区及粒流协同道,通过3组分布式CAV粒控策略,从CAV无协同换道、协同换道、专用道调速、全车道调速等4个方面实现了不同程度的管控,提升了车辆聚集性,仿真结果表明通行能力最高可提升17.0%。针对高速公路事故场景,设置调整、换道和恢复3个管控区,规定了各区粒流协同道的路权,通过分布式CAV流控的车头时距调整策略、集中式CAV粒控的车流均衡策略以及分布式CAV粒控的车道恢复策略实现了车道临时封闭情况下的交通协同管控,仿真结果表明通行能力最高可提升18.1%,车辆平均延误时间最高可减少336 s。研究结果表明:粒流协同道管控方法通过增强CAV车流与混合车流的物理耦合度,并借助针对不同交通场景的协同策略,能显著提升道路通行能力,同时有效优化交通运行状况。展开更多
基金financial support by PhR MA Foundation Starter Research Grant in Pharmaceutics
文摘High shear wet granulation(HSWG) is one of the most poorly understood processes with known difficulties in optimization and scale up. The purpose of the current study is to develop a DEM model which can be applied under dynamic process conditions with high predictive capacity to improve process insight. The DEM model is used to predict agglomeration as a function of impeller speed and liquid addition rate in a high shear wet granulator. The DEM model tracks dynamic formation and breakage of liquid bridges between particles as liquid binder in the system is added, and corrects for the change in material properties as a function of the binder content.
基金the support from the National Natural Science Foundation of China(No.51171033)the Fundamental Research Funds for the Central Universities(DUT15LAB05,DUT16LAB03)
文摘The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol(PVA)as binder by spray granulation method,The electromagnetic parameters of Fe and C composite particles were analyzed by vector network.The complex permittivity and magnetic permeability of Fe and C composite particles matched well with increasing C nanoparticle content,and then the microwave loss property was improved.A minimum reflection loss(RL)of-42.7 dB at 3.68 GHz for a composite with 4.6 mm in thickness can be obtained when the content ratio of the C nanoparticles,the modified Fe nanoparticles and the PVA is 21:49:30(Sample 3).
基金the National Natural Science Foundation of China(Grant No.51964022).
文摘In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In particular,an Euler-Euler two-phase flow model is used to analyze the dynamics of both SiC particles and air.The numerical results show that by setting a certain reverse rotating speed of the rotating chamber,the accumulation of SiC particles on the wall can be improved,i.e.,their direction of motion in proximity to the wall can be changed and particles can be forced to re-join the granulation process.Experimental tests conducted to verify the reliability of the numerical findings,demonstrate that when the reverse rotating speed of the rotating chamber is 4 r/min,the sphericity of SiC particles in the rotating chamber is the highest and the fluidity is the best possible one.
基金the National Natural Science Foundation of China(Grant:51964022).
文摘In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-phase flow is analyzed using a VOF(Volume of Fraction)method together with the modified realizable k-εturbulence model.The influence of nozzle orifice shape on velocity distribution,pressure distribution is studied.The results show that the pressure difference in a convergent conical nozzle is the largest with a hollow air core being formed in the nozzle.The corresponding velocity of atomized liquid at nozzle orifice is the largest.Using a self-designed atomization experiment platform,the velocity and pressure of atomized liquid and the spray cone angle are measured for three nozzles with different orifice shapes.The micro-morphology of Si3N4 particles is also determined.These data confirm the correctness of numerical simulation.Considering atomization performance of the nozzle,the contraction conical nozzle is more suitable for the atomization of Si3N4 in practical production based on the dry granulation approach.
基金Supported by the Youth Foundation of College of Resources and Environment of Northeast Agricultural University
文摘A novel method isolated microorganisms in soil granule was built. The key steps included: repeated elutriation of soil by sterilized water, inoculation on the plates with the elutriated sediments, incubation of the plates and isolation of the actinomycetes by using selected culture medium. We formulated that most microflora included the dominant actinomycetes in the soil were carried away with the sterilized water in the elutriation procedure, some rare actinomycetes and few other microflora included bacteria were remained in the elutriated sediments, the other microflora were excluded to grew into colonies on the plates by using selective culture medium for actinomycetes in the elutriated sediments. Results showed the supposition. Non-streptomycete actinomycetes were isolated both from black soil samples from Chinese northeast area and compost samples from Chinese central area. Soil fungi in granule were isolated by using the selective conditions to favor fungi. The results showed that the method was effective
文摘This paper deals with a comparative research between two processes of granulation, namely mini-pelletized sintering (MPS) and hybrid pelletized sintering (HPS), focusing on aspects such as the balling effect, production, quality, and mineralography and metallurgical performance of sinter. The results indicate that both methods can result in a satisfying capability in balling effect and metallurgical performance of sinter, qualified to meet the plant production requirements, but when the granulation time and granulating moisture are set to around 6 minutes and 7.0% respectively, MPS is better than HPS.
基金Natural Science Foundation of Hunan province(2022JJ30453 and 2024JJ6362)the Key Research and Development Program of Hunan Province(2022SK2014).
文摘Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(MFSM)method.Methods This study established the MFSM method.To demonstrate its effectiveness,we applied this novel approach to analyze Danxi Granules(丹膝颗粒,DXG)and its constituent herbal materials.To begin with,the ultra-performance liquid chromatography(UPLC)was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materi-als.Next,the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units.Then,we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment(TQSM)parameters,information entropy and information amount,along with their relative standard deviation(RSD).Finally,we compared the TQSM parameters,information entropy and infor-mation amount,and their RSD between the traditional and novel fingerprints to validate the new analytical method.Results The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method.Before integration,the ranges of the peak number,three TQSM parameters,information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07−209.73,9390−183064μv·s,5.928−21.33 min,22.62−106.69 min^(2),4.230−6.539,and 50530−974186μv·s,respectively.After integration,the ranges of these parameters were 10.00−88.00,9390−183064μv·s,5.951−22.02 min,22.27−104.73 min^(2),2.223−5.277,and 38159−807200μv·s,respectively.Correspondingly,the RSD of all the aforementioned pa-rameters before integration were 2.12%−9.15%,6.04%−49.78%,1.15%−23.10%,3.97%−25.79%,1.49%−19.86%,and 6.64%−51.20%,respectively.However,after integration,they changed to 0.00%,6.04%−49.87%,1.73%−23.02%,3.84%−26.85%,1.17%−16.54%,and 6.40%−48.59%,respectively.The results demonstrated that in the newly integrated fingerprint,the analytical units of constituent herbal materials,information entropy and information amount were significantly reduced(P<0.05),while the TQSM parameters remained unchanged(P>0.05).Additionally,the RSD of the TQSM parameters,information entropy,and information amount didn’t show significant difference before and after integration(P>0.05),but the RSD of the number and area of the integrated analytical units significantly decreased(P<0.05).Conclusion The MFSM method could reduce the analytical units of constituent herbal mate-rials while maintain the properties and variability from their original fingerprint.Thus,it could serve as a feasible and reliable tool to reduce difficulties in analyzing multi-compo-nents within CMMs and facilitating the evaluation of their quality.
文摘The Co content dependence of crystal structure and specific magnetization of Fe1-xCox-SiO2granular solid prepared by the sol-gel method have been studied. It is found that the crystal structure, Iattice parameter and specific magnetization of the FeCo alloy particles depend on the Co content.