Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen...Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells,which focuses on the Fe-N4 single-atom catalysts and the iron nitride materials(such as Fe2N and Fe3N).A hybridized catalyst having a hierarchical porous structure with regular macropores could enable the desired mass transfer efficiency in the catalytic process.In this study,we have constructed a new type of hybrid catalyst having iron and iron-nitrogen alloy nanoparticles(Fe-N austenite,termed as Fe-NA)embedded in the three-dimensional ordered macroporous N-doped carbon(3DOM Fe/Fe-NA@NC)by direct pyrolysis of single-source dicyandiamide-based iron metal-organic frameworks.The as-synthesized composites preserve the hierarchical porous carbon framework with ordered macropores and high specific surface area,incorporating the uniformly dispersed iron/iron-nitrogen austenite nanoparticles.Thereby,the striking architectural configuration embedded with highly active catalytic species delivers a superior oxygen reduction activity with a half-wave potential of 0.88 V and a subsequent superior Zn-air battery performance with high open-circuit voltage and continuous stability as compared to those using a commercial 20%Pt/C catalyst.展开更多
As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-orien...As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.展开更多
Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcas...Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
文摘Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells,which focuses on the Fe-N4 single-atom catalysts and the iron nitride materials(such as Fe2N and Fe3N).A hybridized catalyst having a hierarchical porous structure with regular macropores could enable the desired mass transfer efficiency in the catalytic process.In this study,we have constructed a new type of hybrid catalyst having iron and iron-nitrogen alloy nanoparticles(Fe-N austenite,termed as Fe-NA)embedded in the three-dimensional ordered macroporous N-doped carbon(3DOM Fe/Fe-NA@NC)by direct pyrolysis of single-source dicyandiamide-based iron metal-organic frameworks.The as-synthesized composites preserve the hierarchical porous carbon framework with ordered macropores and high specific surface area,incorporating the uniformly dispersed iron/iron-nitrogen austenite nanoparticles.Thereby,the striking architectural configuration embedded with highly active catalytic species delivers a superior oxygen reduction activity with a half-wave potential of 0.88 V and a subsequent superior Zn-air battery performance with high open-circuit voltage and continuous stability as compared to those using a commercial 20%Pt/C catalyst.
基金supported by the National Natural Science Foundation of China(Grant Nos.62201276,62350001,U22B2026,and 62425105)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)the Key R&D Program(Industry Foresight and Key Core Technologies)of Jiangsu Province(Grant No.BE2022071)。
文摘As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.
文摘Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.