Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430...From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430]).This result was generalized by Guo[J.Math.Soc.Japan,2018,70(3):1103-1110]with assumption of a lower or upper scalar curvature bound.In this paper,we will generalize the scalar curvature rigidity theorem of Guo to the case of λ-hypersurfaces.We will also give an alternative proof of the theorem(cf.[2014,arXiv:1410.5302]and[Proc.Amer.Math.Soc.,2018,146(10):4459-4471])that λ-hypersurfaces which are entire graphs must be hyperplanes.展开更多
Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-d...Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.展开更多
Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination envir...Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination environment with the[Co(dps)_(4)(N_(3))_(2)]unit.Although the differences in crystal parameters are nearly negligible,their magnetic properties are very different.AC susceptibility data show that 1 behaves as a typical field-induced single-ion magnet(SIM)with the out-of-phase(χ_(M)”)signals,while 2 shows ac signals ofχ_(M)”without peaks even under applied dc filed within our measurement window.Far-IR magneto-spectra(FIRMS)show strong spin-phonon couplings at 0 T in 2,likely making the magnetic relaxation in 2 fast,while the couplings are negligible in 1.Small spin-phonon coupling in 1 likely leads to slower magnetic relaxation,making 1 a SIM.The difference in the properties is due to the structural rigidity of 2 in its 3D network,leading to stronger spin-phonon coupling.Combined high-field EPR(HF-EPR)and FIRMS studies give spin-Hamiltonian parameters,including D=64.0(9)cm^(-1),|E|=15.7(2)cm^(-1)for 1 and D=80.0(2)cm^(-1),|E|=19.0(1)cm^(-1)for 2.展开更多
By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic ...By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.展开更多
Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehic...Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehicle-bridge coupled vibration system,this research explores the dynamic response of a moving van encountering travelling trains on a typical single-level rail-cum-road bridge.The relationship between the line distance of the railway and highway and the dynamic response of the van is discussed.The study reveals that the vertical response of the van is primarily governed by the coupled vibration of the vehicle-bridge system and road roughness,with minimal impact from the line distance.The aerodynamic impact of the train-induced wind significantly influences the lateral,yawing and rolling responses,and the line distance also affects the vehicle’s behavior,with decreasing distance leading to increased response.Among them,the yawing vibration is the most influential.The relationship between the maximum dynamic response and line distance is quantitatively analyzed using the proposed fitting formulas,which perform well on the lateral,rolling and yawing response and shows higher accuracy for acceleration compared to velocity and displacement.Relevant results could provide help on optimizing the arrangement of bridge deck.展开更多
Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibr...Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.展开更多
Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial c...Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial comminuted fractures admitted for treatment between July 2023 and December 2024 were selected. Using a random number table method, 30 patients were assigned to the observation group, where moderate traction using a dental arch splint combined with rigid internal fixation was applied. Another 30 patients were assigned to the control group and only received dental arch splint traction treatment. The total effective rate, postoperative recovery indicators, periodontal status, complication rate, and quality of life scores were compared between the two groups. Results: The total effective rate in the observation group was higher than that in the control group. The postoperative recovery indicators and periodontal status in the observation group were superior to those in the control group. The complication rate and quality of life score were lower in the observation group compared to the control group, with P < 0.05. Conclusion: Combining dental arch splint intermaxillary traction with rigid internal fixation can improve the periodontal status and quality of life of patients with facial comminuted fractures, shorten postoperative recovery time, reduce various complications, and enhance surgical efficacy.展开更多
The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle...The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle,initial position,aspect ratio,and size on the motion characteristics were investigated.The computational results indicate that the particle's motion undergoes two distinct stages:a starting stage that involves moving from the release position to a limit cycle,and a periodic stage that involves moving on the limit cycle.The initial orientation of the particle has a minimal impact on both stages of motion.In contrast,the time it takes for the particle to reach the limit cycle may vary depending on the release position.Furthermore,particles with a larger aspect ratio exhibit a greater maximum velocity magnitude;an increase in particle size causes the particle trajectory to contract more toward the center of the cavity,decreasing the centrifugal force experienced by the particle.展开更多
This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for...This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.展开更多
The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suf...The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.展开更多
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th...This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.展开更多
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco...We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.展开更多
High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical p...High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical phenomena occurring in the cylinder/valve plate interface is essential to investigate energy dissipation. The effects of the splined shaft bending rigidity on the cylinder tilt behaviour in an EHA pump need to be considered, because the deflection and radial expansion of a steel shaft rotating at a high speed cannot be ignored. This paper proposes a new mathematical model to predict the cylinder tilt behaviour by establishing a quantitative relationship between the splined shaft deflection, the cylinder tilt angle, and the tilt azimuth angle. The moments exerted by the splined shaft are included in the equilibrium equation of the cylinder. The effects of solid and hollow splined shafts equipped in an EHA pump prototype are compared at variable speeds of 5000–10,000 r/min. With a weight saving of 29.7%, the hollow shaft is experimentally found to have almost no influence on the volumetric efficiency, but to reduce the mechanical efficiency by 0.6–2.4%. The results agree with the trivial differences of the simulated central gap heights of the interface between the two shafts and the enlargement of the simulated tilt angles by the hollow shaft. The findings could guide designs of the cylinder/valve plate interface and the splined shaft to improve both the efficiency and power density of an EHA pump.展开更多
Though the lengthened shrink-fit holder (LSFH) is widely applied in high speed milling of the parts characterized by deep cavities at present, its design and selection mainly depends on the experience and lacks a corr...Though the lengthened shrink-fit holder (LSFH) is widely applied in high speed milling of the parts characterized by deep cavities at present, its design and selection mainly depends on the experience and lacks a correct theoretical guidance. In this paper, attention is focus on the radial grip rigidity of the matching of LSFH and cutter in high speed milling. Based on the experiment modal analysis (EMA) technique, an accurate finite element model of the matching of LSFH and cutter is established firstly. Subsequently, the influence of different interference, grip length and spindle speed on the grip rigidity of LSFH are analyzed. The analysis results show that there is a reasonable interference and grip length between the LSFH and cutter so that to have a steepless grip and have a good radial grip rigidity and at the same time to avoid the strength of LSFH to exceed it’s yield limit which will reduce the precision and service life of LSFH, besides when spindle speed reach a extension the weakening influence of the centrifugal force on the radial grip rigidity of the matching of LSFH and cutter should been taken into account. Finally, the finite element analysis results are verified based on the construction of measurement method of the grip rigidity and the results fit very well. The studies provide a theoretical basis for the design, selection and the serialization and standardization of the matching of LSFH and cutter.展开更多
A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S^n+1 satisfying S f4 - f^2 3 ≤1/nS^3 where S is the squared norm of...We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S^n+1 satisfying S f4 - f^2 3 ≤1/nS^3 where S is the squared norm of the second fundamental form of M, and fk = ∑λi^k and λi(1 ≤ i ≤ n) are the principal curvatures of M. We prove that there exists a positive constant δ(n)(≥ n/2) depending only on n such that if n ≤ S ≤ n +δ(n), then S ≡ n, i.e., M is one of the Clifford torus S^K (√k/n) × S^n-k (V√n-k/n) for 1≤ k ≤ n - i. Moreover, we prove that if S is a constant, then there exists a positive constant T(n)(≥ n -2/3) depending only on n such that ifn ≤ S 〈 n + τ(n), then S ≡n, i.e.. M is a Clifford torus.展开更多
The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stif...The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.展开更多
Two soluble isomerized polyimides(PIs) synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA) with either 2,2'-dimethylbenzidine(2,2'-DMB) or 3,3'-DMB were investigated by means ...Two soluble isomerized polyimides(PIs) synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA) with either 2,2'-dimethylbenzidine(2,2'-DMB) or 3,3'-DMB were investigated by means of size-exclusion chromatography coupled with multi-angle laser light scattering,a viscometer and a refractive index detector in tetrahydrofuran(THF) with tetrabutylammonium bromide(TBAB) at 35 ℃.The corresponding parameters related to conformations α and ν,evaluated from the scaling relationships [η]=K η M α and R g =K g M ν,respectively,were 0.66±0.01 and 0.55±0.02 for poly(6FDA/3,3'-DMB),and 0.67±0.01 and 0.56±0.01 for poly(6FDA/2,2'-DMB),indicating a random coil conformation for both the samples in this mobile system.The persistence length l p and shift factor M L(relative molecular weight per unit contour length) were estimated from the relationship between intrinsic viscosity and molecular weight for the wormlike cylinder model proposed by Bohdanecky.Both l p and M L showed that the two PIs in THF are flexible chains and exhibit some local rigidity to some extent.展开更多
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
文摘From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430]).This result was generalized by Guo[J.Math.Soc.Japan,2018,70(3):1103-1110]with assumption of a lower or upper scalar curvature bound.In this paper,we will generalize the scalar curvature rigidity theorem of Guo to the case of λ-hypersurfaces.We will also give an alternative proof of the theorem(cf.[2014,arXiv:1410.5302]and[Proc.Amer.Math.Soc.,2018,146(10):4459-4471])that λ-hypersurfaces which are entire graphs must be hyperplanes.
文摘Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
基金supported by the National Key Research and Development Program of China(No.2021YFA1600304)Joint Fund for Regional Innovation and Development(No.U20A2073)+4 种基金National Natural Science Foundation of China(Nos.22373048,21973038,61904119 and 22105089)Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(No.20212BCD42018)US National Science Foundation(NSF,No.CHE-2055499)the Interdisciplinary program of Wuhan National High Magnetic Field Center(No.WHMFC202133)the support of the NSF Research Traineeship Program(No.DGE-2152168)。
文摘Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination environment with the[Co(dps)_(4)(N_(3))_(2)]unit.Although the differences in crystal parameters are nearly negligible,their magnetic properties are very different.AC susceptibility data show that 1 behaves as a typical field-induced single-ion magnet(SIM)with the out-of-phase(χ_(M)”)signals,while 2 shows ac signals ofχ_(M)”without peaks even under applied dc filed within our measurement window.Far-IR magneto-spectra(FIRMS)show strong spin-phonon couplings at 0 T in 2,likely making the magnetic relaxation in 2 fast,while the couplings are negligible in 1.Small spin-phonon coupling in 1 likely leads to slower magnetic relaxation,making 1 a SIM.The difference in the properties is due to the structural rigidity of 2 in its 3D network,leading to stronger spin-phonon coupling.Combined high-field EPR(HF-EPR)and FIRMS studies give spin-Hamiltonian parameters,including D=64.0(9)cm^(-1),|E|=15.7(2)cm^(-1)for 1 and D=80.0(2)cm^(-1),|E|=19.0(1)cm^(-1)for 2.
基金supported by the National Natural Science Foundation of China(12071161,11971165)supported by the National Natural Science Foundation of China(11971042)the Natural Science Foundation of Zhejiang Province(Z24A010005)。
文摘By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.
基金Associate Professor Training Project of Nanning University-“Research on the Full-Cycle Rapid Modeling Method of Bridges Based on‘BIM+’Technology”under Grant No.2021JSGC17Guangxi Science and Technology Planning Project:Construction of China ASEAN International Joint Laboratory for Comprehensive Transportation under Grant No.GUIKE AD20297125Basic Ability Promotion Project for Young and Middle-Aged Teachers in Guangxi Universities under Grant No.2019KY0929。
文摘Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehicle-bridge coupled vibration system,this research explores the dynamic response of a moving van encountering travelling trains on a typical single-level rail-cum-road bridge.The relationship between the line distance of the railway and highway and the dynamic response of the van is discussed.The study reveals that the vertical response of the van is primarily governed by the coupled vibration of the vehicle-bridge system and road roughness,with minimal impact from the line distance.The aerodynamic impact of the train-induced wind significantly influences the lateral,yawing and rolling responses,and the line distance also affects the vehicle’s behavior,with decreasing distance leading to increased response.Among them,the yawing vibration is the most influential.The relationship between the maximum dynamic response and line distance is quantitatively analyzed using the proposed fitting formulas,which perform well on the lateral,rolling and yawing response and shows higher accuracy for acceleration compared to velocity and displacement.Relevant results could provide help on optimizing the arrangement of bridge deck.
基金The Research Project of Southwest Municipal Design&Research Institute of China under Grant No.2023KY-KT-02-I。
文摘Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.
基金Special Support Program for Scientific and Technological Talent“Application and Impact of Dental Arch Splint Intermaxillary Traction Combined with Rigid Internal Fixation on Oral Health in Patients with Facial Fractures”(DX2023BR18)。
文摘Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial comminuted fractures admitted for treatment between July 2023 and December 2024 were selected. Using a random number table method, 30 patients were assigned to the observation group, where moderate traction using a dental arch splint combined with rigid internal fixation was applied. Another 30 patients were assigned to the control group and only received dental arch splint traction treatment. The total effective rate, postoperative recovery indicators, periodontal status, complication rate, and quality of life scores were compared between the two groups. Results: The total effective rate in the observation group was higher than that in the control group. The postoperative recovery indicators and periodontal status in the observation group were superior to those in the control group. The complication rate and quality of life score were lower in the observation group compared to the control group, with P < 0.05. Conclusion: Combining dental arch splint intermaxillary traction with rigid internal fixation can improve the periodontal status and quality of life of patients with facial comminuted fractures, shorten postoperative recovery time, reduce various complications, and enhance surgical efficacy.
文摘The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle,initial position,aspect ratio,and size on the motion characteristics were investigated.The computational results indicate that the particle's motion undergoes two distinct stages:a starting stage that involves moving from the release position to a limit cycle,and a periodic stage that involves moving on the limit cycle.The initial orientation of the particle has a minimal impact on both stages of motion.In contrast,the time it takes for the particle to reach the limit cycle may vary depending on the release position.Furthermore,particles with a larger aspect ratio exhibit a greater maximum velocity magnitude;an increase in particle size causes the particle trajectory to contract more toward the center of the cavity,decreasing the centrifugal force experienced by the particle.
基金supported by the National Natural Science Foundation of China(No.12372229)the Aeronautical Science Foundation of China(No.2020Z006063001)+1 种基金the Science and Technology on Rotorcraft Aeromechanics Laboratory Foundation,China(No.61422202110)the Fundamental Research Funds for the Central Universities of China(No.DUT22LK12)。
文摘This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.
基金supported by the National Key R&D Program of China(No.2022YFB3805302)the National Natural Science Foundation of China(No.22379141)+2 种基金CAS Strategic Leading Science&Technology Program(A)(No.XDA0400201)Dalian Science and Technology Star Program(No.2022RQ014)Youth Innovation Promotion Association CAS(No.2022184).
文摘The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.
文摘This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.
文摘We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.
基金the financial supports received from the National Basic Research Program of China (973 Program) (No. 2014CB046403)the National Natural Science Foundation of China (Nos. U1509204 and 51605425)
文摘High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical phenomena occurring in the cylinder/valve plate interface is essential to investigate energy dissipation. The effects of the splined shaft bending rigidity on the cylinder tilt behaviour in an EHA pump need to be considered, because the deflection and radial expansion of a steel shaft rotating at a high speed cannot be ignored. This paper proposes a new mathematical model to predict the cylinder tilt behaviour by establishing a quantitative relationship between the splined shaft deflection, the cylinder tilt angle, and the tilt azimuth angle. The moments exerted by the splined shaft are included in the equilibrium equation of the cylinder. The effects of solid and hollow splined shafts equipped in an EHA pump prototype are compared at variable speeds of 5000–10,000 r/min. With a weight saving of 29.7%, the hollow shaft is experimentally found to have almost no influence on the volumetric efficiency, but to reduce the mechanical efficiency by 0.6–2.4%. The results agree with the trivial differences of the simulated central gap heights of the interface between the two shafts and the enlargement of the simulated tilt angles by the hollow shaft. The findings could guide designs of the cylinder/valve plate interface and the splined shaft to improve both the efficiency and power density of an EHA pump.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA44302)Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 10C1259)+2 种基金Hunan Provincial Planned Science and Technology Project of China (Grant No. 2011FJ3231)National Natural Science Foundation of China (Grant No. 51005194)Open Innovation Platform of Hunan College Fund, China (Grant No. 10K063)
文摘Though the lengthened shrink-fit holder (LSFH) is widely applied in high speed milling of the parts characterized by deep cavities at present, its design and selection mainly depends on the experience and lacks a correct theoretical guidance. In this paper, attention is focus on the radial grip rigidity of the matching of LSFH and cutter in high speed milling. Based on the experiment modal analysis (EMA) technique, an accurate finite element model of the matching of LSFH and cutter is established firstly. Subsequently, the influence of different interference, grip length and spindle speed on the grip rigidity of LSFH are analyzed. The analysis results show that there is a reasonable interference and grip length between the LSFH and cutter so that to have a steepless grip and have a good radial grip rigidity and at the same time to avoid the strength of LSFH to exceed it’s yield limit which will reduce the precision and service life of LSFH, besides when spindle speed reach a extension the weakening influence of the centrifugal force on the radial grip rigidity of the matching of LSFH and cutter should been taken into account. Finally, the finite element analysis results are verified based on the construction of measurement method of the grip rigidity and the results fit very well. The studies provide a theoretical basis for the design, selection and the serialization and standardization of the matching of LSFH and cutter.
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
基金Supported by the National Natural Science Foundation of China (11071211)
文摘We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S^n+1 satisfying S f4 - f^2 3 ≤1/nS^3 where S is the squared norm of the second fundamental form of M, and fk = ∑λi^k and λi(1 ≤ i ≤ n) are the principal curvatures of M. We prove that there exists a positive constant δ(n)(≥ n/2) depending only on n such that if n ≤ S ≤ n +δ(n), then S ≡ n, i.e., M is one of the Clifford torus S^K (√k/n) × S^n-k (V√n-k/n) for 1≤ k ≤ n - i. Moreover, we prove that if S is a constant, then there exists a positive constant T(n)(≥ n -2/3) depending only on n such that ifn ≤ S 〈 n + τ(n), then S ≡n, i.e.. M is a Clifford torus.
基金Project(12 High-tech Urban C11) supported by High-tech Urban Development Program of Ministry of Land,Transport and Maritime Affairs,Korea
文摘The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.
基金Supported by the National Natural Science Foundation of China(No.20674085)the Funds for Creative Researth Groups of China(No.50921062)the Project of Bureau of Science and Technology of Jilin Province,China(No.20101535)
文摘Two soluble isomerized polyimides(PIs) synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA) with either 2,2'-dimethylbenzidine(2,2'-DMB) or 3,3'-DMB were investigated by means of size-exclusion chromatography coupled with multi-angle laser light scattering,a viscometer and a refractive index detector in tetrahydrofuran(THF) with tetrabutylammonium bromide(TBAB) at 35 ℃.The corresponding parameters related to conformations α and ν,evaluated from the scaling relationships [η]=K η M α and R g =K g M ν,respectively,were 0.66±0.01 and 0.55±0.02 for poly(6FDA/3,3'-DMB),and 0.67±0.01 and 0.56±0.01 for poly(6FDA/2,2'-DMB),indicating a random coil conformation for both the samples in this mobile system.The persistence length l p and shift factor M L(relative molecular weight per unit contour length) were estimated from the relationship between intrinsic viscosity and molecular weight for the wormlike cylinder model proposed by Bohdanecky.Both l p and M L showed that the two PIs in THF are flexible chains and exhibit some local rigidity to some extent.
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.