In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analy...In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.展开更多
In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer ...In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer course teaching,it is necessary to emphasize the introduction and application of high-tech innovations in its path of innovative development.This course is a typical representative of multidisciplinary teaching,involving multiple disciplines such as electronic engineering,automation,and computer science.In response to issues faced in traditional teaching,such as rigid organization of teaching content that struggles to keep pace with technological advancements,resulting in a noticeable lag in knowledge transfer,and monotonous teaching methods that fail to precisely meet the diverse learning needs of students,analyzing the innovative applications of this course under the empowerment of AI technology holds significant practical relevance.In this regard,the study relies on AI technology empowerment to analyze the application paths for the deep integration of AI technology and single-chip microcomputer courses,constructing a new teaching model to provide references for enhancing teaching quality and stimulating students’innovative potential.展开更多
Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o...Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
BACKGROUND Early screening,preoperative staging,and diagnosis of lymph node metastasis are crucial for improving the prognosis of gastric cancer(GC).AIM To evaluate the diagnostic value of combined multidetector compu...BACKGROUND Early screening,preoperative staging,and diagnosis of lymph node metastasis are crucial for improving the prognosis of gastric cancer(GC).AIM To evaluate the diagnostic value of combined multidetector computed tomography(MDCT)and gastrointestinal endoscopy for GC screening,preoperative staging,and lymph node metastasis detection,thereby providing a reference for clinical diagnosis and treatment.METHODS In this retrospective study clinical and imaging data of 134 patients with suspected GC who were admitted between January 2023 and October 2024 were initially reviewed.According to the inclusion and exclusion criteria,102 patients were finally enrolled in the analysis.All enrolled patients had undergone both MDCT and gastrointestinal endoscopy examinations prior to surgical intervention.Preoperative clinical staging and lymph node metastasis findings were compared with pathological results.RESULTS The combined use of MDCT and gastrointestinal endoscopy demonstrated a sensitivity of 98.53%,specificity of 97.06%,accuracy of 98.04%,positive predictive value of 98.53%,and negative predictive value of 97.06%for diagnosing GC.These factors were all significantly higher than those of MDCT or endoscopy alone(P<0.05).The accuracy rates of the combined approach for detecting clinical T and N stages were 97.06%and 92.65%,respectively,outperforming MDCT alone(86.76% and 79.41%)and endoscopy alone(85.29% and 70.59%)(P<0.05).Among 68 patients with confirmed GC,50(73.53%)were pathologically diagnosed with lymph node metastasis.The accuracy for detecting lymph node metastasis was 66.00%with endoscopy,76.00%with MDCT,and 92.00% with the combined approach,all with statistically significant differences(P<0.05).CONCLUSION The combined application of MDCT and gastrointestinal endoscopy enhanced diagnostic accuracy for GC,provided greater consistency in preoperative staging,and improved the detection of lymph node metastasis,thereby demonstrating significant clinical utility.展开更多
In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot n...In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot necessarily unitary.The duality mode provides a natural link between classical computing and quantum computing.In addition,the duality mode provides a new tool for quantum algorithm design.展开更多
A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R...A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R on the Bridges and Stampede Supercomputers will be described. This new technique has led to great improvements in timing as compared to those in R alone, or R with C and MPI. These improvements include processing and forecasting vectors of size 25,000 in an average time of 6 minutes on the Stampede Supercomputer and 2.5 minutes on the Bridges Supercomputer as compared to previous processing times of 3.5 hours.展开更多
In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “...In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when...Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when Virchow’s triad of hypercoagulability, changes in blood flow (e.g. stasis) and endothelial dysfunction, is fulfilled. Although such immobilisation is most often seen in bedbound patients and travellers on long distance flights, there is increasing evidence that prolonged periods of work or leisure related to using computers while seated at work desks, is an independent risk factor. In this report, we present two cases of “e-thrombosis” from prolonged sitting while using a computer.展开更多
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r...The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.展开更多
Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible ligh...Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.展开更多
Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousa...Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.展开更多
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ...Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.展开更多
Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While suc...Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.展开更多
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer course teaching,it is necessary to emphasize the introduction and application of high-tech innovations in its path of innovative development.This course is a typical representative of multidisciplinary teaching,involving multiple disciplines such as electronic engineering,automation,and computer science.In response to issues faced in traditional teaching,such as rigid organization of teaching content that struggles to keep pace with technological advancements,resulting in a noticeable lag in knowledge transfer,and monotonous teaching methods that fail to precisely meet the diverse learning needs of students,analyzing the innovative applications of this course under the empowerment of AI technology holds significant practical relevance.In this regard,the study relies on AI technology empowerment to analyze the application paths for the deep integration of AI technology and single-chip microcomputer courses,constructing a new teaching model to provide references for enhancing teaching quality and stimulating students’innovative potential.
基金supported in part by the National Natural Science Foundation of China under Grant 52307134the Fundamental Research Funds for the Central Universities(xzy012025022)。
文摘Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
文摘BACKGROUND Early screening,preoperative staging,and diagnosis of lymph node metastasis are crucial for improving the prognosis of gastric cancer(GC).AIM To evaluate the diagnostic value of combined multidetector computed tomography(MDCT)and gastrointestinal endoscopy for GC screening,preoperative staging,and lymph node metastasis detection,thereby providing a reference for clinical diagnosis and treatment.METHODS In this retrospective study clinical and imaging data of 134 patients with suspected GC who were admitted between January 2023 and October 2024 were initially reviewed.According to the inclusion and exclusion criteria,102 patients were finally enrolled in the analysis.All enrolled patients had undergone both MDCT and gastrointestinal endoscopy examinations prior to surgical intervention.Preoperative clinical staging and lymph node metastasis findings were compared with pathological results.RESULTS The combined use of MDCT and gastrointestinal endoscopy demonstrated a sensitivity of 98.53%,specificity of 97.06%,accuracy of 98.04%,positive predictive value of 98.53%,and negative predictive value of 97.06%for diagnosing GC.These factors were all significantly higher than those of MDCT or endoscopy alone(P<0.05).The accuracy rates of the combined approach for detecting clinical T and N stages were 97.06%and 92.65%,respectively,outperforming MDCT alone(86.76% and 79.41%)and endoscopy alone(85.29% and 70.59%)(P<0.05).Among 68 patients with confirmed GC,50(73.53%)were pathologically diagnosed with lymph node metastasis.The accuracy for detecting lymph node metastasis was 66.00%with endoscopy,76.00%with MDCT,and 92.00% with the combined approach,all with statistically significant differences(P<0.05).CONCLUSION The combined application of MDCT and gastrointestinal endoscopy enhanced diagnostic accuracy for GC,provided greater consistency in preoperative staging,and improved the detection of lymph node metastasis,thereby demonstrating significant clinical utility.
基金the National Fundamental Research Program under Grant No.2006CB921106National Natural Science Foundation of China under Grant Nos.10325521 and 60433050
文摘In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot necessarily unitary.The duality mode provides a natural link between classical computing and quantum computing.In addition,the duality mode provides a new tool for quantum algorithm design.
文摘A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R on the Bridges and Stampede Supercomputers will be described. This new technique has led to great improvements in timing as compared to those in R alone, or R with C and MPI. These improvements include processing and forecasting vectors of size 25,000 in an average time of 6 minutes on the Stampede Supercomputer and 2.5 minutes on the Bridges Supercomputer as compared to previous processing times of 3.5 hours.
文摘In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when Virchow’s triad of hypercoagulability, changes in blood flow (e.g. stasis) and endothelial dysfunction, is fulfilled. Although such immobilisation is most often seen in bedbound patients and travellers on long distance flights, there is increasing evidence that prolonged periods of work or leisure related to using computers while seated at work desks, is an independent risk factor. In this report, we present two cases of “e-thrombosis” from prolonged sitting while using a computer.
文摘The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.
文摘Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.
文摘Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.
基金supported by the"Science and Technology Development Plan Project of Jilin Province,China"(Grant No.20240101018JJ)the Fundamental Research Funds for the Central Universities(Grant No.2412023YQ004)the National Natural Science Foundation of China(Grant Nos.52072065,52272140,52372137,and U23A20568).
文摘Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.
基金National Natural Science Foundation of China(62171305,62405206,62004135,62001317,62111530301)Natural Science Foundation of Jiangsu Province(BK20240778,BK20241917)+3 种基金State Key Laboratory of Advanced Optical Communication Systems and Networks,China(2023GZKF08)China Postdoctoral Science Foundation(2024M752314)Postdoctoral Fellowship Program of CPSF(GZC20231883)Innovative and Entrepreneurial Talent Program of Jiangsu Province(JSSCRC2021527).
文摘Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.