The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thick...The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thicknesses and positions in a combustion chamber casing simulator made of K439B superalloy was investigated.The intrinsic mechanisms of the SSE were explored from the dendrite structure,volume fraction and size of theγ'phase,and element segregation,etc.It is shown that this casting exhibits a strong SSE of creep rupture life,characterized by a significant difference in the CRL values up to 60%with the variation of wall thickness and position in the casing.In terms of casting technology,the influence of SSE on CRL is actually determined by the cooling rate.The SSE on the creep rupture life originates from the dendrite structure(such as the secondary dendrite arm spacing),volume fraction size of theγ'phase in the dendrite trunk,and elements segregation rate.This work may have implications for the design and application of engineering components with large sizes and complex structures.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the...The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the space drag-free systems.In this paper,the planar dynamic characteristics of the drag-free satellite with double test masses are analyzed and nondimensionalized.A simulator vehicle composed of an air bearing testbed and two inverted pendulums is devised on the basic of equivalent mass and equivalent stiffness proposed firstly in this paper.And the dynamic model of the simulator equivalent to the sensitive axis motion of the test mass and the planar motion of the satellite is derived from the Euler-Lagrange method.Then,the dynamic equivalence conditions between the space prototype system and the ground model system are derived from Pi theorem.To satisfy these conditions,the scaling laws of two systems and requirements for the inverted pendulum are put forward.Besides,the corresponding control scaling laws and a closed-loop control strategy are deduced and applied to establishing the numerical simulation experiments of underactuated system.Subsequently,the comparative simulation results demonstrate the similarity of dynamical behavior between the scaled-down ground model and the space prototype.As a result,the rationality and effectiveness of the design method are proved,facilitating the ground simulation of future gravitational wave detection satellites.展开更多
BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space a...BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space and time similar to reality for exposure therapy techniques is increasing.AIM To examine exposure therapy using driving simulations in patients with PTSD due to traffic accidents with PTSD symptoms.METHODS The intervention was provided to two individuals who experienced PTSD symptoms after a traffic accident using a driving simulator.Among the singlesubject experimental designs,the ABA(baseline-intervention-baseline)design was used,and the PTSD checklist and brain wave frequency were used to measure the results.RESULTS In all participants,the standard category departure time of the electroencephalogram decreased from baseline,and PTSD symptoms decreased after the intervention.CONCLUSION These results suggest the potential use of a driving simulator as an exposure treatment tool for PTSD.展开更多
Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to inv...Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to investigate the current literature to find out if simulators,phantoms,and other training models could be used as a tool for teaching urologists.Methods:A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement and the recommendations of the European Association of Urology guidelines for conducting systematic reviews.Fifteen out of 932 studies met our inclusion criteria and are presented in the current review.Results:The UroTrainer(Karl Storz GmbH,Tuttlingen,Germany),a virtual reality training simulator,achieved positive feedback and an excellent face and construct validity by the participants.The inspection of bladder mucosa,blood loss,tumor resection,and procedural time was improved after the training,especially for inexperienced urologists and medical students.The construct validity of UroSim®(VirtaMed,Zurich,Switzerland)was established.SIMBLA simulator(Samed GmbH,Dresden,Germany)was found to be a realistic and useful tool by experts and urologists with intermediate experience.The test objective competency model based on SIMBLA simulator could be used for evaluating urologists.The porcine model of the Asian Urological Surgery Training and Education Group also received positive feedback by the participants that tried it.The Simulation and Technology Enhanced Learning Initiative Project had an extraordinary face and content validity,and 60%of participants would like to use the simulators in the future.The 5-day multimodal training curriculum“Boot Camp”in the United Kingdom achieved an increase of the level of confidence of the participants that lasted months after the project.Conclusion:Simulators and courses or curricula based on a simulator training could be a valuable learning tool for any surgeon,and there is no doubt that they should be a part of every urologist's technical education.展开更多
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra...A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among chan...The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.展开更多
Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests t...Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.展开更多
The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has...The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees' learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-theart simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application.展开更多
电力系统分析课程中有些概念抽象,不容易通过实际演示来完成,使得本门课程教与学都变得困难起来。采用具有可视化图形用户界面的Power World Simulator软件,可以很好地解决这些问题。文章介绍了这款全英文免费的软件,根据一个14节点电...电力系统分析课程中有些概念抽象,不容易通过实际演示来完成,使得本门课程教与学都变得困难起来。采用具有可视化图形用户界面的Power World Simulator软件,可以很好地解决这些问题。文章介绍了这款全英文免费的软件,根据一个14节点电力系统原型,建立了可视化的模型,使用该软件演示了潮流计算和短路计算等难点问题,显示了该软件给电力系统分析课程教与学带来的好处。展开更多
电力系统具有良好的稳定性是保证电网正常运行的关键,充分应用Power World Simulator电力系统仿真软件对我国西北某地区实际电网进行安全稳定性分析。根据给定的实际电网运行数据搭建电网模型并进行潮流计算,将潮流计算结果与静态安全...电力系统具有良好的稳定性是保证电网正常运行的关键,充分应用Power World Simulator电力系统仿真软件对我国西北某地区实际电网进行安全稳定性分析。根据给定的实际电网运行数据搭建电网模型并进行潮流计算,将潮流计算结果与静态安全理论相结合,对该地区电网模型进行N-1静态安全性分析。针对线路负载率过高以及节点母线电压越限的情况,提出解决措施以达到提高电网运行稳定性的目的。展开更多
基金financially supported by the National Science and Technology Major Project of China (No.J2019-VI-0004-0117)a Laboratory Fund Project (6142903220101)。
文摘The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thicknesses and positions in a combustion chamber casing simulator made of K439B superalloy was investigated.The intrinsic mechanisms of the SSE were explored from the dendrite structure,volume fraction and size of theγ'phase,and element segregation,etc.It is shown that this casting exhibits a strong SSE of creep rupture life,characterized by a significant difference in the CRL values up to 60%with the variation of wall thickness and position in the casing.In terms of casting technology,the influence of SSE on CRL is actually determined by the cooling rate.The SSE on the creep rupture life originates from the dendrite structure(such as the secondary dendrite arm spacing),volume fraction size of theγ'phase in the dendrite trunk,and elements segregation rate.This work may have implications for the design and application of engineering components with large sizes and complex structures.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC2202604)the Strategy Priority Research Program of Chinese Academy of Sciences (Grant No.XDA1502110101).
文摘The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the space drag-free systems.In this paper,the planar dynamic characteristics of the drag-free satellite with double test masses are analyzed and nondimensionalized.A simulator vehicle composed of an air bearing testbed and two inverted pendulums is devised on the basic of equivalent mass and equivalent stiffness proposed firstly in this paper.And the dynamic model of the simulator equivalent to the sensitive axis motion of the test mass and the planar motion of the satellite is derived from the Euler-Lagrange method.Then,the dynamic equivalence conditions between the space prototype system and the ground model system are derived from Pi theorem.To satisfy these conditions,the scaling laws of two systems and requirements for the inverted pendulum are put forward.Besides,the corresponding control scaling laws and a closed-loop control strategy are deduced and applied to establishing the numerical simulation experiments of underactuated system.Subsequently,the comparative simulation results demonstrate the similarity of dynamical behavior between the scaled-down ground model and the space prototype.As a result,the rationality and effectiveness of the design method are proved,facilitating the ground simulation of future gravitational wave detection satellites.
文摘BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space and time similar to reality for exposure therapy techniques is increasing.AIM To examine exposure therapy using driving simulations in patients with PTSD due to traffic accidents with PTSD symptoms.METHODS The intervention was provided to two individuals who experienced PTSD symptoms after a traffic accident using a driving simulator.Among the singlesubject experimental designs,the ABA(baseline-intervention-baseline)design was used,and the PTSD checklist and brain wave frequency were used to measure the results.RESULTS In all participants,the standard category departure time of the electroencephalogram decreased from baseline,and PTSD symptoms decreased after the intervention.CONCLUSION These results suggest the potential use of a driving simulator as an exposure treatment tool for PTSD.
文摘Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to investigate the current literature to find out if simulators,phantoms,and other training models could be used as a tool for teaching urologists.Methods:A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement and the recommendations of the European Association of Urology guidelines for conducting systematic reviews.Fifteen out of 932 studies met our inclusion criteria and are presented in the current review.Results:The UroTrainer(Karl Storz GmbH,Tuttlingen,Germany),a virtual reality training simulator,achieved positive feedback and an excellent face and construct validity by the participants.The inspection of bladder mucosa,blood loss,tumor resection,and procedural time was improved after the training,especially for inexperienced urologists and medical students.The construct validity of UroSim®(VirtaMed,Zurich,Switzerland)was established.SIMBLA simulator(Samed GmbH,Dresden,Germany)was found to be a realistic and useful tool by experts and urologists with intermediate experience.The test objective competency model based on SIMBLA simulator could be used for evaluating urologists.The porcine model of the Asian Urological Surgery Training and Education Group also received positive feedback by the participants that tried it.The Simulation and Technology Enhanced Learning Initiative Project had an extraordinary face and content validity,and 60%of participants would like to use the simulators in the future.The 5-day multimodal training curriculum“Boot Camp”in the United Kingdom achieved an increase of the level of confidence of the participants that lasted months after the project.Conclusion:Simulators and courses or curricula based on a simulator training could be a valuable learning tool for any surgeon,and there is no doubt that they should be a part of every urologist's technical education.
基金funded partially by the Australian Government through the Australian Research Council’s Linkage Infrastructure,Equipment and Facilities (LIEF)funding scheme (LE130100133)。
文摘A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
文摘The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.
基金support from the John Templeton Foundation,The Quantum Information Structure of Spacetime(QISS)Project(qiss.fr)(the opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the John Templeton Foundation)(Grant No.61466)and QISS2(Grant No.62312).
文摘Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.
文摘The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees' learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-theart simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application.
文摘电力系统分析课程中有些概念抽象,不容易通过实际演示来完成,使得本门课程教与学都变得困难起来。采用具有可视化图形用户界面的Power World Simulator软件,可以很好地解决这些问题。文章介绍了这款全英文免费的软件,根据一个14节点电力系统原型,建立了可视化的模型,使用该软件演示了潮流计算和短路计算等难点问题,显示了该软件给电力系统分析课程教与学带来的好处。
文摘电力系统具有良好的稳定性是保证电网正常运行的关键,充分应用Power World Simulator电力系统仿真软件对我国西北某地区实际电网进行安全稳定性分析。根据给定的实际电网运行数据搭建电网模型并进行潮流计算,将潮流计算结果与静态安全理论相结合,对该地区电网模型进行N-1静态安全性分析。针对线路负载率过高以及节点母线电压越限的情况,提出解决措施以达到提高电网运行稳定性的目的。