期刊文献+
共找到19,671篇文章
< 1 2 250 >
每页显示 20 50 100
Tropical Cyclone Simulations:The Impact of Model Top/Damping Layer and the Role of Stratospheric Gravity Waves
1
作者 Xu WANG Yuan WANG +2 位作者 Lifeng ZHANG Yun ZHANG Jiping GUAN 《Advances in Atmospheric Sciences》 2025年第11期2290-2304,共15页
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh... This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations. 展开更多
关键词 gravity waves STRATOSPHERE tropical cyclones numerical simulations damping layer model top
在线阅读 下载PDF
Research Progress and Applications of Carbon Nanotubes,Black Phosphorus,and Graphene-Based Nanomaterials:Insights from Computational Simulations
2
作者 Qinghua Qin 《Computers, Materials & Continua》 2025年第10期1-39,共39页
Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to the... Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to their exceptional mechanical,electrical,and thermal properties.This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials,with a particular focus on insights gained from molecular dynamics(MD)simulations.Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs,fabrication and stability challenges associated with BPNTs,and the emerging potential of graphyne nanotubes(GNTs).The review also outlines design strategies for enhancing nanodevice performance and underscores the importance of future efforts in experimental validation,multi-scale coupling analyses,and the development of novel nanocomposites to accelerate practical deployment. 展开更多
关键词 Carbon nanotubes black phosphorus GRAPHENE NANOMATERIALS molecular dynamics simulations
在线阅读 下载PDF
DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing
3
作者 Zhimin Song Zhe Tang +4 位作者 Yu Zhang Yanru Zhou Xiaozheng Duan Yan Du Chong-Bo Ma 《Chinese Chemical Letters》 2025年第10期453-458,共6页
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth... Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity. 展开更多
关键词 Single-atom nanozymes DNA-regulated biosensors Molecular dynamics simulations Colorimetric aptasensing Point-of-care diagnostics
原文传递
Molecular dynamics simulations of collision cascades in polycrystalline tungsten
4
作者 Lixia Liu Mingxuan Jiang +3 位作者 Ning Gao Yangchun Chen Wangyu Hu Hiuqiu Deng 《Chinese Physics B》 2025年第4期468-476,共9页
Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies ... Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials. 展开更多
关键词 collision cascades molecular dynamics simulations TUNGSTEN POLYCRYSTALLINE
原文传递
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
5
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Improving the reliability of classical molecular dynamics simulations in battery electrolyte design
6
作者 Xin He Yujie Zhang +5 位作者 Haomiao Li Min Zhou Wei Wang Ruxing Wang Kai Jiang Kangli Wang 《Journal of Energy Chemistry》 2025年第2期34-41,I0002,共9页
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for... Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes. 展开更多
关键词 ELECTROLYTE Classical molecular dynamics Solvation structure simulations
在线阅读 下载PDF
Atomistic simulations of dislocation behaviors in Cr-Mn-Fe-Co-Ni high-entropy alloys with different Cr/Ni ratio
7
作者 Yu Tian Fei Chen 《Journal of Materials Science & Technology》 2025年第17期30-42,共13页
Pronounced compositional fluctuations in CrMnFeCoNi high-entropy alloys(HEAs)lead to variations of the stacking-fault energy(SFE),which dominates the dislocation behavior and mechanical properties.However,studies on t... Pronounced compositional fluctuations in CrMnFeCoNi high-entropy alloys(HEAs)lead to variations of the stacking-fault energy(SFE),which dominates the dislocation behavior and mechanical properties.However,studies on the underlying dislocation behaviors and deformation mechanisms as a function of composition(Cr/Ni ratio)within CrMnFeCoNi HEAs are largely lacking,which hinders further understanding of the composition-structure-property relationships for the rational design of HEAs.Atomistic simulations were employed in this study to investigate the core structures and dynamic behaviors of a/2<110>edge dislocations in non-equiatomic CrMnFeCoNi HEA,as well as its plasticity mechanisms.The results show that the core structure of a/2<110>edge dislocations is planar after energy minimization,but with significant variations in the separation distance between two partial dislocations along the dislocation line owing to the complex local composition.The effects of the Cr/Ni ratio on the dislocation-solute interactions during dislocation gliding were calculated and discussed.Additionally,snapshots of dislocation motion under shear stress were analyzed.The observations indicate that the strengthening of the non-equiatomic CrMnFeCoNi HEA with increasing Cr concentration is not contributed by the expected solute/dislocation interactions,but the observed events of edge extended dislocation climbing through jog nucleation.The unusual but reasonable dislocation climbing phenomenon and the resultant strengthening observed in this study open extraordinary opportunities for obtaining outstanding mechanical properties in non-equiatomic CrMnFeCoNi HEAs by tailoring the compositional variations. 展开更多
关键词 High-entropy alloy Atomistic simulations Dislocation behaviors Strengthening mechanism
原文传递
Evaluating kinetic properties of Mg-based alloy melts via deep learning potential driven molecular dynamics simulations
8
作者 Jiang You Cheng Wang +3 位作者 Hong Ju Shao-Yang Hu Yong-Zhen Wang Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第35期24-35,共12页
The kinetic properties of Mg alloy melts are crucial for determining the forming quality of castings,as they directly affect crystal nucleation and dendritic growth.However,accurately assessing the kinetic properties ... The kinetic properties of Mg alloy melts are crucial for determining the forming quality of castings,as they directly affect crystal nucleation and dendritic growth.However,accurately assessing the kinetic properties of molten Mg alloys remains challenging due to the difficulties in experimentally character-izing the high-temperature melts.Herein,we propose that molecular dynamics(MD)simulations driven by deep learning based interatomic potentials(DPs),referred to as DPMD,are a promising strategy to tackle this challenge.We develop MgAl-DP,MgSi-DP,MgCa-DP,and MgZn-DP to assess the kinetic prop-erties of Mg-Al,Mg-Si,Mg-Ca,and Mg-Zn alloy melts.The reliability of our DPs is rigorously evaluated by comparing the DPMD results with those from ab initio MD(AIMD)simulations,as well as available ex-perimental results.Our theoretically evaluated viscosity of Mg-Al melts shows excellent agreement with experimental results over a wide temperature range.Additionally,we found that the solute elements Ca and Zn exhibit sluggish kinetics in the studied melts,which supporting the promising glass-forming abil-ity of the Mg-Zn-Ca alloy system.The computational efficiency of DPMD simulations is several orders of magnitude higher than that of AIMD simulations,while maintaining ab initio-level accuracy.This makes DPMD a highly feasible protocol for building a comprehensive and reliable database of kinetic properties of Mg alloy melts. 展开更多
关键词 Magnesium alloys Alloy melts Melt kinetics Molecular dynamics simulations Deep learning potentials
原文传递
Surface Wear Behavior of Nanograined NbMoTaW Refractory High‑Entropy Alloys via Nano‑scratching Simulations
9
作者 Meisa Zhou Kun‑Ming Pan +3 位作者 Xiao‑Ye Zhou Shulong Ye Shaojie Du Hong‑Hui Wu 《Acta Metallurgica Sinica(English Letters)》 2025年第6期946-960,共15页
Surface nanocrystallization is a practical approach to enhance surface wear resistance,whereas the specific mechanism of how surface nanocrystallization affects the wear resistance of NbMoTaW refractory high-entropy a... Surface nanocrystallization is a practical approach to enhance surface wear resistance,whereas the specific mechanism of how surface nanocrystallization affects the wear resistance of NbMoTaW refractory high-entropy alloys(RHEAs)remains unclear.Herein,we performed molecular dynamics simulations to explore the wear behaviors of nanograined NbMoTaW RHEA during surface scratching.The wear resistance of nanograined models was significantly enhanced compared to the single-crystalline counterpart.As the grain size increases,the dominant plastic deformation mechanism switches from grain boundary deformation to dislocation movement.Notably,the model with a grain size of 20 nm exhibits the highest dislocation density,local stress,and degree of work hardening.At elevated temperatures,the dynamic recrystallization becomes a crucial plastic deformation mechanism and hinders the formation of dislocations,resulting in a decrease in dislocation density and consequently a decline in the wear resistance of NbMoTaW RHEAs.The current study provides insight into the mechanism underlying the enhanced wear resistance of NbMoTaW RHEAs. 展开更多
关键词 Refractory high-entropy alloys Surface nanocrystallization Molecular dynamics simulations Wear resistance
原文传递
Mechanisms and interactions in the reduction of Fe_(2)O_(3) by H_(2)/CO mixed gas:Atomic insights from ReaxFF molecular dynamics simulations and experiments
10
作者 Qiang Cheng Alberto NConejo +3 位作者 Jianliang Zhang Daniel Sopu Yaozu Wang Zhengjian Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1372-1382,共11页
The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simul... The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simulation method was used to observe the reduction process and provide an atomic-level explanation.The accuracy of the parameters used in the simulation was verified by the density functional theory(DFT)calculation.The simulation shows that the initial reduction rate of H_(2) is much faster than that of CO(from 800 to 950℃).As the reduction proceeds,cementite,obtained after CO participates in the reduction at 850℃,will appear on the iron surface.Due to the active properties of C atoms in cementite,they are easy to further react with the O atoms in Fe_(2)O_(3).The generation of internal CO may destroy the dense structure of the surface layer,thereby affecting the overall reduction swelling of Fe_(2)O_(3).However,excess CO is detrimental to the reaction rate,mainly because of the poor thermodynamic conditions of CO in the temperature range and the molecular diffusion capacity is not as good as that of H_(2).Furthermore,the surface structures obtained after H_(2) and CO reduction have been compared,and it was found that the structure obtained by CO reduction has a larger surface area,thus promoting the sub sequent reaction of H_(2). 展开更多
关键词 hydrogen reduction hydrogen/carbon monoxide mixture ReaxFF molecular dynamics simulations reduction swelling atomic mechanisms
在线阅读 下载PDF
A conductivity model for hydrogen based on ab initio simulations
11
作者 Uwe Kleinschmidt Ronald Redmer 《Matter and Radiation at Extremes》 2025年第4期58-69,共12页
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp... We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes. 展开更多
关键词 molecular dynamics simulations electrical thermal conductivity CONDUCTIVITY density functional theoryon interpolation formulas conductivity model extended ab initio data setwe spitzer ziman theorywe
在线阅读 下载PDF
First-principles microkinetic simulations revealing the driving effect of zeolite in bifunctional catalysts for the conversion of syngas to olefins
12
作者 Wende Hu Jun Ke +1 位作者 Yangdong Wang Chuanming Wang 《Chinese Journal of Catalysis》 2025年第6期222-233,共12页
Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we t... Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions. 展开更多
关键词 Syngas to olefins Bifunctional catalysis Microkinetic simulations Driving effect Impossible trinity ZnAl_(2)O_(4)oxide
在线阅读 下载PDF
Seismic sedimentological-based quantifications of late-Cretaceous hydrocarbon-bearing late-aggradational lowstands prograding wedges in the Indus basin:Frequency-controlled porosity-constrained dynamic simulations
13
作者 Muhammad Tayyab Naseer 《Natural Gas Industry B》 2025年第5期585-606,共22页
Seismic quantitative reservoir simulations and characterizations have played a vital role in exploring stratigraphic traps,such as lateaggradational lowstands prograding wedge systems(LPWS)within lowstands systems tra... Seismic quantitative reservoir simulations and characterizations have played a vital role in exploring stratigraphic traps,such as lateaggradational lowstands prograding wedge systems(LPWS)within lowstands systems tracts(LST).However,seismic data acquisition operations are always dominated by exceptional seismic coherent noise events,e.g.,multiples,which reduce the signal strengths of the sourcegenerated incident seismic waves within vertically and laterally heterogeneous earth systems.Hence,these noise events create hurdles in predicting paleo-depositional impedance(PDI),paleo-thickness(PTS),paleo-dense fractured networks,erosional and depositional zones,faultcontrolled migrations,and types of seismic reflection configurations(SRFC),which are key elements in developing stratigraphic pinch-out traps.This research utilizes the state-of-the-art technologies of spectral wavelet-based instantaneous time-frequency analysis and seismic waveform frequency-controlled porosity-constrained static reservoir simulation(FDPVS)tools to quantify the LPWS inside the Onshore Basin,Pakistan.The use of conventional amplitude-based seismic attributes,such as the average energy,remained a better tool for deciphering the overall geological architecture of the LPWS.Conventional FDPVS realizations resolved a PDI of−1.391 gm./c.c.^(*)m/s to−0.97 gm./c.c.^(*)m/s for LPWS with PTS of 12 and 20 m,respectively.A 0.9 km lateral extent of paleo-dense fractured networks(PDFN)with a strong linear regression R^(2)=0.93 was also resolved.Average energy attribute-based instantaneous frequency FDPVS realizations enabled the imaging of parallel-toprograding SRFC with resolved magnitudes of−0.259 gm./c.c.^(*)m/s for PDI,20 m for PTS,and 0.73 km for PDFN with linear regression transforms at R^(2)=0.92,which indicates the deposition of onlap fill facies inside the LPWS during extensive sea-level fall.These realizations have also resolved frequency-controlled fault migrations on 27-Hz spectral waveform-based amplitude plots with 2.174 gm./c.c.^(*)m/s PDI for conduit fault systems and 27-Hz with 0.585 gm./c.c.^(*)m/s PDI for sealing fault systems.All these structural configurations are completely sealed up by transgressive seals of transgressive systems tracts and,hence,developed into pure stratigraphic-based oil and gas plays.This research has strong implications for side-tracking drilling locations and provides an analogue for basins with similar geology and stratigraphy worldwide. 展开更多
关键词 Late-aggradational lowstands prograding wedges systems Lowstands systems tracts Multiples and reverberations Signal strengths Paleo-dense fractured networks Seismic waveform frequency-controlled porosity-constraint dynamical reservoir simulations Stratigraphic-based oil and gas plays
在线阅读 下载PDF
Main Controlling Factors of Imbricate Thrust Faults at the Frontal Edge of the Makran Accretionary Wedge–Insights from Physical Simulations 被引量:1
14
作者 SUN Bo YU Fusheng +7 位作者 LIAO Jing GONG Jianming YAN Jiajie LEI Wenhao QU Jiajun SUN Haoyue CUI Zixuan REN Jia 《Journal of Ocean University of China》 2025年第6期1596-1612,共17页
The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the ... The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the factors controlling their development remain subjects of debate.This paper,based on seismic profile analysis,employs physical simulation experiments to establish a'wedge'type subduction model.The study explores the influence of the initial wedge angle,horizontal sand layer thickness,and the presence or absence of a decollement layer on the structural styles of the thrust wedge.Experimental results indicate that as the initial wedge angle decreases from 11°to 8°,the lateral growth of the thrust wedge increases,whereas vertical growth diminishes.When the horizontal sand layer thickness is reduced from 4.5 cm to 3.0 cm,the spacing between the frontal thrusts decreases and the number of thrust faults increases.Both lateral and vertical growth are relatively reduced,resulting in a smaller thrust wedge.When a decollement layer is present,the structural style exhibits layered deformation.The decollement layer constrains the development of back thrusts and promotes the localized formation of frontal thrusts.In conclusion,the imbricate thrust faults at the frontal edge of the Makran accretionary wedge are primarily controlled by the characteristics of the wedge itself and the presence of the decollement layer. 展开更多
关键词 Makran accretionary wedge imbricate thrust faults MECHANISMS PIV technique physical simulation
在线阅读 下载PDF
Land use/cover change and ecological network in Gansu Province,China during 2000-2020 and their simulations in 2050 被引量:1
15
作者 MA Xinshu XIN Cunlin +6 位作者 CHEN Ning XIN Shunjie CHEN Hongxiang ZHANG Bo KANG Ligang WANG Yu JIAO Jirong 《Journal of Arid Land》 2025年第1期43-57,共15页
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t... Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making. 展开更多
关键词 patch-generating land use simulation(PLUS)model morphological spatial pattern analysis(MSPA) circuit theory ecological source ecological resistance surface ecological corridor ecological pinch point
在线阅读 下载PDF
Multidisciplinary and multi-fidelity coupling methods in aircraft engine simulations
16
作者 YANG Xin XIE Pengfu +2 位作者 DONG Xuezhi HE Ai TAN Chunqing 《推进技术》 北大核心 2025年第5期1-12,共12页
To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil... To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency. 展开更多
关键词 AERO-ENGINE Multi-fidelity simulation Overall performance CO-SIMULATION Integrated model Zooming strategy
原文传递
Coarse-grained molecular dynamics simulations on self-assembly of polystyrene-block-poly(2-vinylpyridine)
17
作者 Daiwen Li Shoutian Qiu +6 位作者 Gan Liu Ming Liu Mingjie Wei Shipeng Sun Weihong Xing Xiaohua Lu Yong Wang 《Chinese Journal of Chemical Engineering》 2025年第7期15-25,共11页
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole... Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level. 展开更多
关键词 Block copolymers SELF-ASSEMBLY Martini force field POLYMERS Computer simulation Molecular simulation
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
18
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Influence ofγʹvolume fraction on creep of Ni-based superalloy through phase-field simulations
19
作者 Min YANG Fan YANG +3 位作者 Jia CHEN Min GUO Hai-jun SU Jun ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第4期1168-1181,共14页
γʹvolume fraction(fv)plays a critical role in the mechanical properties of Ni-based single-crystal superalloys.A creep phase-field model is utilized to simulate the microstructure evolution and creep performance duri... γʹvolume fraction(fv)plays a critical role in the mechanical properties of Ni-based single-crystal superalloys.A creep phase-field model is utilized to simulate the microstructure evolution and creep performance during creep under different fv conditions.The influence mechanism of fv on creep properties is investigated based on the analysis of evolutions of internal stress and strain fields.As fv increases,the morphology ofγʹrafts changes from discontinuous to continuous,while the morphological change ofγchannels is opposite,the inclination ofγchannels from the[010]direction to(011)directions during tertiary creep first decreases and then increases,the creep life first increases and then decreases,and the main distribution of creep damage shifts fromγʹtoγʹ/γinterfaces andγchannels.The longest creep life under fv of 0.65 can be attributed to the stableγʹraft structure,the lowest stress and strain inγchannels,and the slowest damage accumulation. 展开更多
关键词 phase-field simulation internal stress internal strain creep behavior single-crystal superalloys
在线阅读 下载PDF
Effect of Nacelle Motions on Rotor Performance and Drivetrain Dynamics in Floating Offshore Wind Turbines Using Fully Coupled Simulations
20
作者 Shuangyi Xie Yongran Li +2 位作者 Jiao He Yingzhe Kan Yuxin Li 《哈尔滨工程大学学报(英文版)》 2025年第6期1150-1163,共14页
This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using ... This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using the National Renewable Energy Laboratory 5 MW monopile-supported offshore wind turbine and the OC4 DeepCwind semisubmersible wind turbine as case studies,the research addresses the complex dynamic responses resulting from the interaction among wind,waves,and turbine structures.Detailed multi-body dynamics models of wind turbines,including drivetrain components,are created within the SIMPACK framework.Meanwhile,the mooring system is modeled using a lumped-mass method.Various operational conditions are simulated through five wind-wave load cases.Results demonstrate that nacelle motions significantly influence rotor speed,thrust,torque,and power output,as well as the dynamic loads on drivetrain components.These findings highlight the need for advanced simulation techniques for the design and optimization of FOWTs to ensure reliable performance and longevity. 展开更多
关键词 Drivetrain Coupled simulation Monopile wind turbine Semisubmersible platform Nacelle motion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部