In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoun...In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally.展开更多
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli...This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”展开更多
Tearing modes may play an important role in the density limit disruption.The Magnetohydrodynamic(MHD)code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation.The impuri...Tearing modes may play an important role in the density limit disruption.The Magnetohydrodynamic(MHD)code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation.The impurity radiation can lead to plasma contraction and local enhancement of the current density.When the locally enhanced region of the current density approaches to the resonance surface,the tearing mode can be excited,even if the tearing mode is stable in the initial equilibrium.Through a scan of the initial atomic number(Z)and impurity concentrations,it is found that impurities with different Z values exhibit similar behaviors in the radiation-driven tearing mode.The impurity radiation can drive tearing mode growth through temperature cooling near the resonance surface,and there exists a linear relationship between the temperature perturbation caused by impurity radiation and the linear growth rate of the tearing mode.Additionally,the impurity can promote the growth of magnetic islands through the radiation cooling inside the magnetic island,and there exists a correlation between the initial parameters of impurity and the width of the saturated magnetic island.展开更多
The deposition layer on the discharge channel wall of a Hall thruster after long-term operation occasionally detaches from the wall and interferes with the plasma inside the channel,resulting in current pulse and thre...The deposition layer on the discharge channel wall of a Hall thruster after long-term operation occasionally detaches from the wall and interferes with the plasma inside the channel,resulting in current pulse and threatening the power supply.To understand the generation mechanism of the current pulse,the interaction between the peeling material and the channel plasma was studied by the particle-in-cell and Monte Carlo collision(PIC/MCC)method.The plasma evolution and distribution in the Hall thruster channel when peeling material existed were simulated.Simulation results show that the peeling material changes the electron transportation and ionization,and the effects are related to the position of the peeling material.When the peeling material invades the zone where the ionization rate is originally the highest without peeling material,the ionization process is almost terminated.The ionization suppression by the peeling material will cause the propellant gas to refill the channel exit.As the peeling material moves away,gas discharge is induced near the channel exit,resulting in anode current pulse.展开更多
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula...Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents.展开更多
This paper presents a numerical simulation of DC glow discharge at 2 Torr(1 Torr=1.33322×10~2 Pa)with a microhollow anode,using a two-dimensional(2D)PIC/MCC code to explore the impact of the hollow anode structur...This paper presents a numerical simulation of DC glow discharge at 2 Torr(1 Torr=1.33322×10~2 Pa)with a microhollow anode,using a two-dimensional(2D)PIC/MCC code to explore the impact of the hollow anode structure on discharge characteristics.Simulation results show that the plasma density in the anode channel decreases exponentially along the x-direction towards the outlet while the electric potential decreases linearly.The electron temperature,derived from the relationship between density and electric potential,shows a good agreement with the calculated temperature.The potential peak at the inlet,along with the grounded anode,forms a transverse potential well that draws electrons toward the center of the channel.The x-direction electric field,generated by the potential difference between the inlet and outlet of the anode,directs electrons toward the inlet of the anode.Low-energy electrons are confined within the potential well,while very few high-energy electrons outlet the channel.The hollow anode structure serves as a collimator for electrons,leading to an increment of moderate-velocity electron flux in the anode channel.Shortening the anode leads to a slower rate of density decrease,resulting in a higher density at the outlet.展开更多
This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilit...This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.展开更多
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari...This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.展开更多
As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pr...As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology.展开更多
In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how fac...In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.展开更多
The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined ge...The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined generation of heat and power is analysed.Great attention is dedicated to the correct sizing of the CHP/CCHP plant both in term of energy efficiency and economic viability.A detailed building model is developed and used,through dynamic building simulation,to identify the potential energy and economic savings achievable with the installation of a CHP/CCHP sized based on the results of the simulation itself.The work proves the usefulness of dynamic energy simulation as an evaluation tool for retrofits of CHP plants and provides suggestions on the correct sizing of CHP equipment.It is also meant to prove what could be achieved if those kinds of analysis were carried out during the design of the building.展开更多
Pelagic fish are the most abundant species in upwelling regions,contributing 25%of total global fisheries production.Climate-driven changes in the marine environment play a crucial role in their population dynamics.Us...Pelagic fish are the most abundant species in upwelling regions,contributing 25%of total global fisheries production.Climate-driven changes in the marine environment play a crucial role in their population dynamics.Using Chilean jack mackerel(Trachurus murphyi)as an example,this study conducted simulations to quantify the impacts of environmental variations on the stock assessment.A habitat-based surplus production model was developed by integrating suitable habitat area into the model parameters carrying capacity(K)and intrinsic growth rate(r),with a suitable habitat area serving as the proxy for the environmental conditions for Chilean jack mackerel in the Southeast Pacific Ocean.The dynamics of Chilean jack mackerel stock and fisheries data were simulated,and four assessment models with different configurations were built to fit simulated data,with or without considering environmental effects.The results indicated that Joint K-r model,which integrated both parameters with the suitable habitat area index,outperformed the others by coming closest to the‘true'population dynamics.Ignoring habitat variations in the estimation model tended to overestimate biomass and underestimate harvest rate and reference points.Without observation and process error,the results were estimated with bias,while FMSY is relatively sensitive.This research illustrates the importance to consider random errors and environmental influences on populations,and provides foundation guidelines for future stock assessment.展开更多
As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objective...As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objectives for this research are to explore the efficiency of N_(2) injection to enhance gas extraction from coal seams(N_(2)-ECGE)and its impact on coal seam permeability.By developing a fluid-solid coupling model and using COMSOL Multiphysics to perform numerical simulations,the changes in gas pressure,methane content,gas production,output rate and permeability of coal seams were comparatively analyzed under the two methods of direct extraction and N_(2)-ECGE.The research results show that N_(2)-ECGE can significantly improve the coal seam gas pressure and reduce the coal seam CH_(4) content,and the larger the N_(2) injection pressure the more significant the reduction effect.Meanwhile,N_(2)-ECGE can significantly increase the CH_(4) extraction and output rate,and the increase of N_(2) pressure further improves the extraction efficiency.In addition,the pressure of nitrogen injection has a remarkable effect on coal seam permeability,high pressure of nitrogen injection can increase the permeability in the time of no disturbance,but the rate of permeability decreases more quickly after disturbed.The effect of strain due to adsorption desorption on coal seam permeability dominates.Despite model construction limitations,this research offers essential theoretical and practical direction for N_(2) injection to enhance the permeability evolution law of coal seam gas extraction process.展开更多
Swells are critical concerns regarding safety,marine transportation,and coastal engineering construction of coastal countries along the Gulf of Guinea and have been scientific problems due to the lack of systematic th...Swells are critical concerns regarding safety,marine transportation,and coastal engineering construction of coastal countries along the Gulf of Guinea and have been scientific problems due to the lack of systematic theoretical,numerical,and observational research.In this study,a double nesting numerical model was constructed and validated from the Atlantic Ocean to the Gulf of Guinea based on simulating waves nearshore(SWAN)to explore the swell characteristics and source tracing in the Gulf of Guinea in winter and summer seasons from 2020 to 2021.Simulation results reveal that swells are stronger and deflect more to the west in winter than summer,even though they dominate in both seasons in the Gulf of Guinea in the S-SW directional range.Simulated two-dimensional(2D)wave spectral patterns not only clarify wave composition,variation,and propagation properties from the central South Atlantic Ocean to the Gulf of Guinea,but also distinguish swell strength and directional range in winter and summer.The NW wind events induce swells which spread toward the SSE-ESE direction from the North Atlantic Ocean,big wind source generates sustained and stable S-SW swells from the South Atlantic Ocean,and corresponding swell-influenced areas are discussed.The strongest swell event in the Gulf of Guinea during the simulation was used as a case study to trace its source.A strong clockwise wind vortex within the Roaring Forties induced these large swells in the Gulf of Guinea approximately 5.5 days later,and swell propagation formed a regular isoline of peak period distribution from the South Atlantic Ocean to the Gulf of Guinea in the SSW-SW direction.展开更多
CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemic...CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemical short-range order(CSRO)widely exists in high/medium entropy alloys,its formation in the LPBF-built samples still lacks enough understanding.In this study,we verified its existence by fine transmission electron microscopy characterizations and utilized hybrid Monte Carlo/molecular dynamics simulations to investigate the features and effects of CSRO in LPBF-built CrCoNi MEA(AM model).Results showed that the CSRO fraction and the stacking fault energy of the AM model lie between those of the well-annealed and random solid solution counterparts.Among these models,the AM model exhibited the best strain hardening ability due to its highest capability to generate and store sessile dislocations.The results agreed well with existing data and provide guidance to the future development of LPBF-built CrCoNi MEA.展开更多
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p...According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
Microchannels enable the fast and efficient mixing of multiphase fluids.In this study,a millimeter-scale three-dimensional(3D)circular cyclone-type microreactor was designed for the mixing.The flow characteristics and...Microchannels enable the fast and efficient mixing of multiphase fluids.In this study,a millimeter-scale three-dimensional(3D)circular cyclone-type microreactor was designed for the mixing.The flow characteristics and mixing intensity were simulated by computational fluid dynamics simulations at a flow rate range of 12–96 m L/min using a water/ethyl acetate system.In the 3D variable-diameter structure,the microreactor induced paired opposite vortices and abruptly changed the local pressure to achieve a stable turbulent effect within the theoretical range of laminar flow.Tracer injection simulations indicated that sufficient mixing units successfully promote fluid dispersion.Diazo-coupling experiments showed a segregation index of X_S=0.00,039 within a residence time of 9 s.Extraction experiments on the nbutanol/succinic acid/water system showed that the 3D circular cyclone-type microreactor achieved 100%extraction efficiency(E)in 4.25 s,and the overall volume mass transfer coefficient(K_La)reached 0.05–1.5s^(-1)in 12–96 m L/min.The isolated yield of the phase transfer alkylation and oxidation reactions in the 3D circular cyclone-type microreactor achieved 99%within 36 s,which was superior to the coil microreactor and batch reactor.展开更多
基金Under the auspices of Zhejiang Provincial Natural Science Foundation of China(No.LY19C160007)。
文摘In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally.
文摘This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos.2019YFE03030004 and 2022YFE03100001)。
文摘Tearing modes may play an important role in the density limit disruption.The Magnetohydrodynamic(MHD)code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation.The impurity radiation can lead to plasma contraction and local enhancement of the current density.When the locally enhanced region of the current density approaches to the resonance surface,the tearing mode can be excited,even if the tearing mode is stable in the initial equilibrium.Through a scan of the initial atomic number(Z)and impurity concentrations,it is found that impurities with different Z values exhibit similar behaviors in the radiation-driven tearing mode.The impurity radiation can drive tearing mode growth through temperature cooling near the resonance surface,and there exists a linear relationship between the temperature perturbation caused by impurity radiation and the linear growth rate of the tearing mode.Additionally,the impurity can promote the growth of magnetic islands through the radiation cooling inside the magnetic island,and there exists a correlation between the initial parameters of impurity and the width of the saturated magnetic island.
基金supported by National Natural Science Foundation of China(No.U23B20152).
文摘The deposition layer on the discharge channel wall of a Hall thruster after long-term operation occasionally detaches from the wall and interferes with the plasma inside the channel,resulting in current pulse and threatening the power supply.To understand the generation mechanism of the current pulse,the interaction between the peeling material and the channel plasma was studied by the particle-in-cell and Monte Carlo collision(PIC/MCC)method.The plasma evolution and distribution in the Hall thruster channel when peeling material existed were simulated.Simulation results show that the peeling material changes the electron transportation and ionization,and the effects are related to the position of the peeling material.When the peeling material invades the zone where the ionization rate is originally the highest without peeling material,the ionization process is almost terminated.The ionization suppression by the peeling material will cause the propellant gas to refill the channel exit.As the peeling material moves away,gas discharge is induced near the channel exit,resulting in anode current pulse.
基金support provided by the National Natural Science Foundation of China(Nos.22173051,21829301,21774066),PCSIRT(IRT1257)the College Discipline Innovation and Intelligence Introduction Program(111 Project(B16027)+2 种基金the International Cooperation Base(No.2016D01025)Tianjin International Joint Research and Development Center)P.Zhang acknowledges the financial support provided by NSFC(No.22473024).
文摘Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.12275060 and12075223)the Fund from Frontier Science Center for Interaction between Space Environment and Matter(Grant No.5740401024)。
文摘This paper presents a numerical simulation of DC glow discharge at 2 Torr(1 Torr=1.33322×10~2 Pa)with a microhollow anode,using a two-dimensional(2D)PIC/MCC code to explore the impact of the hollow anode structure on discharge characteristics.Simulation results show that the plasma density in the anode channel decreases exponentially along the x-direction towards the outlet while the electric potential decreases linearly.The electron temperature,derived from the relationship between density and electric potential,shows a good agreement with the calculated temperature.The potential peak at the inlet,along with the grounded anode,forms a transverse potential well that draws electrons toward the center of the channel.The x-direction electric field,generated by the potential difference between the inlet and outlet of the anode,directs electrons toward the inlet of the anode.Low-energy electrons are confined within the potential well,while very few high-energy electrons outlet the channel.The hollow anode structure serves as a collimator for electrons,leading to an increment of moderate-velocity electron flux in the anode channel.Shortening the anode leads to a slower rate of density decrease,resulting in a higher density at the outlet.
基金Project of the 14th Five-Year Plan for Educational Science in Liaoning Province(JG24DB234)Project of Graduate Education and Teaching Reform Research in Liaoning Province(LNYJG2023115)。
文摘This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.
文摘This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.
基金supported by the National Natural Science Foundation of China(52306131)the Natural Science Foundation of Jiangsu Province(BK20230847)+2 种基金the Key Project of the National Natural Science Foundation of China(52336005)the Fundamental Research Funds for the Central Universities(2242024RCB0036)the Open Project Program of State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission(D2024FK156).
文摘As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology.
基金Supported by the National Undergraduate Innovation Training Program(Project No.202211437036).
文摘In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.
文摘The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined generation of heat and power is analysed.Great attention is dedicated to the correct sizing of the CHP/CCHP plant both in term of energy efficiency and economic viability.A detailed building model is developed and used,through dynamic building simulation,to identify the potential energy and economic savings achievable with the installation of a CHP/CCHP sized based on the results of the simulation itself.The work proves the usefulness of dynamic energy simulation as an evaluation tool for retrofits of CHP plants and provides suggestions on the correct sizing of CHP equipment.It is also meant to prove what could be achieved if those kinds of analysis were carried out during the design of the building.
基金supported by the National Key Research and Development Program of China(No.2019YFD0901404)。
文摘Pelagic fish are the most abundant species in upwelling regions,contributing 25%of total global fisheries production.Climate-driven changes in the marine environment play a crucial role in their population dynamics.Using Chilean jack mackerel(Trachurus murphyi)as an example,this study conducted simulations to quantify the impacts of environmental variations on the stock assessment.A habitat-based surplus production model was developed by integrating suitable habitat area into the model parameters carrying capacity(K)and intrinsic growth rate(r),with a suitable habitat area serving as the proxy for the environmental conditions for Chilean jack mackerel in the Southeast Pacific Ocean.The dynamics of Chilean jack mackerel stock and fisheries data were simulated,and four assessment models with different configurations were built to fit simulated data,with or without considering environmental effects.The results indicated that Joint K-r model,which integrated both parameters with the suitable habitat area index,outperformed the others by coming closest to the‘true'population dynamics.Ignoring habitat variations in the estimation model tended to overestimate biomass and underestimate harvest rate and reference points.Without observation and process error,the results were estimated with bias,while FMSY is relatively sensitive.This research illustrates the importance to consider random errors and environmental influences on populations,and provides foundation guidelines for future stock assessment.
基金supported by the National Natural Science Foundation of China(52374249,52130409,52121003)the National Key R&D Program(2023YFC3009003)+1 种基金the Basic Research Business Fees for Central Universities(2024JCCXAQ01)Open Fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-FW202303).
文摘As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objectives for this research are to explore the efficiency of N_(2) injection to enhance gas extraction from coal seams(N_(2)-ECGE)and its impact on coal seam permeability.By developing a fluid-solid coupling model and using COMSOL Multiphysics to perform numerical simulations,the changes in gas pressure,methane content,gas production,output rate and permeability of coal seams were comparatively analyzed under the two methods of direct extraction and N_(2)-ECGE.The research results show that N_(2)-ECGE can significantly improve the coal seam gas pressure and reduce the coal seam CH_(4) content,and the larger the N_(2) injection pressure the more significant the reduction effect.Meanwhile,N_(2)-ECGE can significantly increase the CH_(4) extraction and output rate,and the increase of N_(2) pressure further improves the extraction efficiency.In addition,the pressure of nitrogen injection has a remarkable effect on coal seam permeability,high pressure of nitrogen injection can increase the permeability in the time of no disturbance,but the rate of permeability decreases more quickly after disturbed.The effect of strain due to adsorption desorption on coal seam permeability dominates.Despite model construction limitations,this research offers essential theoretical and practical direction for N_(2) injection to enhance the permeability evolution law of coal seam gas extraction process.
基金The National Key R&D Program of China under contract No.2023YFE0126300the National Natural Science Foundation of China under contract Nos 42066002 and U20A2099.
文摘Swells are critical concerns regarding safety,marine transportation,and coastal engineering construction of coastal countries along the Gulf of Guinea and have been scientific problems due to the lack of systematic theoretical,numerical,and observational research.In this study,a double nesting numerical model was constructed and validated from the Atlantic Ocean to the Gulf of Guinea based on simulating waves nearshore(SWAN)to explore the swell characteristics and source tracing in the Gulf of Guinea in winter and summer seasons from 2020 to 2021.Simulation results reveal that swells are stronger and deflect more to the west in winter than summer,even though they dominate in both seasons in the Gulf of Guinea in the S-SW directional range.Simulated two-dimensional(2D)wave spectral patterns not only clarify wave composition,variation,and propagation properties from the central South Atlantic Ocean to the Gulf of Guinea,but also distinguish swell strength and directional range in winter and summer.The NW wind events induce swells which spread toward the SSE-ESE direction from the North Atlantic Ocean,big wind source generates sustained and stable S-SW swells from the South Atlantic Ocean,and corresponding swell-influenced areas are discussed.The strongest swell event in the Gulf of Guinea during the simulation was used as a case study to trace its source.A strong clockwise wind vortex within the Roaring Forties induced these large swells in the Gulf of Guinea approximately 5.5 days later,and swell propagation formed a regular isoline of peak period distribution from the South Atlantic Ocean to the Gulf of Guinea in the SSW-SW direction.
基金financially supported by the National Key R&D Program of China(No.2022YFB4602102)the National Natural Science Foundation of China(Grant No.51971144)the Natural Science Foundation of Shanghai(Grant No.19ZR1425200)。
文摘CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemical short-range order(CSRO)widely exists in high/medium entropy alloys,its formation in the LPBF-built samples still lacks enough understanding.In this study,we verified its existence by fine transmission electron microscopy characterizations and utilized hybrid Monte Carlo/molecular dynamics simulations to investigate the features and effects of CSRO in LPBF-built CrCoNi MEA(AM model).Results showed that the CSRO fraction and the stacking fault energy of the AM model lie between those of the well-annealed and random solid solution counterparts.Among these models,the AM model exhibited the best strain hardening ability due to its highest capability to generate and store sessile dislocations.The results agreed well with existing data and provide guidance to the future development of LPBF-built CrCoNi MEA.
基金Supported by the Sichuan Province Regional Innovation Cooperation Project(21QYCX0048)Sinopec Science and Technology Department Project(P21048-3)。
文摘According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
文摘Microchannels enable the fast and efficient mixing of multiphase fluids.In this study,a millimeter-scale three-dimensional(3D)circular cyclone-type microreactor was designed for the mixing.The flow characteristics and mixing intensity were simulated by computational fluid dynamics simulations at a flow rate range of 12–96 m L/min using a water/ethyl acetate system.In the 3D variable-diameter structure,the microreactor induced paired opposite vortices and abruptly changed the local pressure to achieve a stable turbulent effect within the theoretical range of laminar flow.Tracer injection simulations indicated that sufficient mixing units successfully promote fluid dispersion.Diazo-coupling experiments showed a segregation index of X_S=0.00,039 within a residence time of 9 s.Extraction experiments on the nbutanol/succinic acid/water system showed that the 3D circular cyclone-type microreactor achieved 100%extraction efficiency(E)in 4.25 s,and the overall volume mass transfer coefficient(K_La)reached 0.05–1.5s^(-1)in 12–96 m L/min.The isolated yield of the phase transfer alkylation and oxidation reactions in the 3D circular cyclone-type microreactor achieved 99%within 36 s,which was superior to the coil microreactor and batch reactor.