Fast fashion is a commercial pattern which provides fashionable clothes at affordable price.This mode needs rapid response supply chain to respond to varying fashion trends.New styles are introduced in every sale peri...Fast fashion is a commercial pattern which provides fashionable clothes at affordable price.This mode needs rapid response supply chain to respond to varying fashion trends.New styles are introduced in every sale period to cover fashion trends.In order to maximize profits,replenishment quantity of each style should be decided in every period.The purchasing and replenishing process over multiple periods based on uncertainty customer demand is modeled,which is formulated by a stochastic choice process.Heterogeneous consumers visit a store in a stochastic sequence and choosing dynamically from the available fashion styles(buy or not buy) according to a utility maximization criterion.The purchase process in a retail shop for multi-period is simulated.An algorithm which combines simulated anneal(SA) with gradient estimation is proposed to find the optimal replenishing strategy from the simulation program.展开更多
The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend it...The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient...Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.展开更多
The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed...The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.展开更多
The use of mathematical models can aid in optimizing therapy settings in ventilated patients to achieve certain therapy goals. Especially when multiple goals have to be met, the use of individualized models can be of ...The use of mathematical models can aid in optimizing therapy settings in ventilated patients to achieve certain therapy goals. Especially when multiple goals have to be met, the use of individualized models can be of great help. The presented work shows the potential of using models of respiratory mechanics and gas exchange to optimize minute ventilation and oxygen supply to achieve a defined oxygenation and carbon dioxide removal in a patient while guaranteeing lung protective ventilation. The venti-lator settings are optimized using respiratory mechanics models to compute a respira-tion rate and tidal volume that keeps the maximum airway pressure below the critical limit of 30 cm H2O while ensuring a sufficient expiration. A three-parameter gas ex-change model is then used to optimize both minute ventilation and oxygen supply to achieve defined arterial partial pressures of oxygen and carbon dioxide in the patient. The presented approach was tested using a JAVA based patient simulator that uses various model combinations to compute patient reactions to changes in the ventilator settings. The simulated patient reaction to the optimized ventilator settings showed good agreement with the desired goals.展开更多
探究土地利用演变及其对碳储量的影响,对于减缓都市圈气候变化、促进绿色低碳发展具有重要意义。该研究在“双碳”目标背景下,结合兴趣点(point of interest,POI)数据并顾及斑块生成土地利用模拟模型(patch-generating land use simulat...探究土地利用演变及其对碳储量的影响,对于减缓都市圈气候变化、促进绿色低碳发展具有重要意义。该研究在“双碳”目标背景下,结合兴趣点(point of interest,POI)数据并顾及斑块生成土地利用模拟模型(patch-generating land use simulation model,PLUS)进行双约束转移矩阵优化,耦合生态系统服务与权衡的综合评估(integrated valuation of ecosystem services and trade-offs,InVEST)模型分析山东省济南都市圈2000—2020年土地利用演变规律及其对生态系统碳储量的影响,模拟预测了自然发展、城镇发展和生态保护3种情景下济南都市圈2030年和2060年土地利用变化并估算其生态系统碳储量,分析其碳储量重心迁移情况,并利用参数最优地理探测器探究碳储量空间分异驱动因素。结果表明:①2000—2020年,济南都市圈耕地、草地和未利用地面积持续减少,林地面积呈波动增加状态,水域、建设用地面积增长迅速;②2000—2020年,济南都市圈碳储量及土地利用空间格局相似,以黄河主脉为分界线,呈现“东南高,西北低”的分布特征,耕地类型碳储量为研究区碳储量的主要来源,占总碳储量的80%以上;③多情景模拟下的碳储量均有所降低,主要原因为高碳密度区域耕地转换为低碳密度区域建设用地,其中生态保护情景碳储量最高,2030年总碳储量为4226.86×10^(6) t,2060年总碳储量为3967.94×10^(6) t;④不同发展时期和情景下的济南都市圈碳储量重心均发生一定偏移,发展趋势受土地利用变化影响,重心地带一直处于山东大学历城区,说明济南都市圈发展较为全面均衡;⑤各驱动因子对济南都市圈碳储量空间分布具有明显影响,其中人口密度对碳储量空间分异解释力最大,交互作用下各因子均呈现对碳储量解释力增强的结果。展开更多
In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we si...In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.展开更多
This review paper presents an overview of simulation-based hydrodynamic design optimization of ship hull forms. A computational tool that is aimed to accomplishing early-stage simulation-based design in terms of hydro...This review paper presents an overview of simulation-based hydrodynamic design optimization of ship hull forms. A computational tool that is aimed to accomplishing early-stage simulation-based design in terms of hydrodynamic performance is discussed in detail. The main components of this computational tool consist of a hydrodynamic module, a hull surface modeling module, and an optimization module. The hydrodynamic module includes both design-oriented simple CFD tools and high-fidelity CFD tools. These integrated CFD tools are used for evaluating hydrodynamic performances at different design stages. The hull sur- face modeling module includes various techniques for ship hull surface representation and modification. This module is used to automatically produce hull forms or modify existing hull forms in terms of hydrodynamic performance and design constraints. The optimization module includes various optimization algorithms and surrogate models, which are used to determine optimal designs in terms of given hydrodynamic performance. As an illustration of the computational tool, a Series 60 hull is optimized for reduced drag using three different modification strategies to outline the specific procedure for conducting simulation-based hydrodynamic design of ship hull forms using the present tool. Numerical results show that the present tool is well suited for the hull form design optimization at early design stage because it can produce effective optimal designs within a short period of time.展开更多
实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX...实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.展开更多
基金The Key Program of National Natural Science Foundation of China(No.61134009)Natural Science Foundation of Shanghai,China(No.16ZR1401200)Fundamental Research Funds for the Central Universities,China(No.2232015D3-24)
文摘Fast fashion is a commercial pattern which provides fashionable clothes at affordable price.This mode needs rapid response supply chain to respond to varying fashion trends.New styles are introduced in every sale period to cover fashion trends.In order to maximize profits,replenishment quantity of each style should be decided in every period.The purchasing and replenishing process over multiple periods based on uncertainty customer demand is modeled,which is formulated by a stochastic choice process.Heterogeneous consumers visit a store in a stochastic sequence and choosing dynamically from the available fashion styles(buy or not buy) according to a utility maximization criterion.The purchase process in a retail shop for multi-period is simulated.An algorithm which combines simulated anneal(SA) with gradient estimation is proposed to find the optimal replenishing strategy from the simulation program.
文摘The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2002AA411030)National Defense Foundation Scientific Research of China (Grant No. d2520061124)
文摘Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.
基金Supported by the National Natural Science Foundation of China(21776074,21576081,2181101120).
文摘The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.
文摘The use of mathematical models can aid in optimizing therapy settings in ventilated patients to achieve certain therapy goals. Especially when multiple goals have to be met, the use of individualized models can be of great help. The presented work shows the potential of using models of respiratory mechanics and gas exchange to optimize minute ventilation and oxygen supply to achieve a defined oxygenation and carbon dioxide removal in a patient while guaranteeing lung protective ventilation. The venti-lator settings are optimized using respiratory mechanics models to compute a respira-tion rate and tidal volume that keeps the maximum airway pressure below the critical limit of 30 cm H2O while ensuring a sufficient expiration. A three-parameter gas ex-change model is then used to optimize both minute ventilation and oxygen supply to achieve defined arterial partial pressures of oxygen and carbon dioxide in the patient. The presented approach was tested using a JAVA based patient simulator that uses various model combinations to compute patient reactions to changes in the ventilator settings. The simulated patient reaction to the optimized ventilator settings showed good agreement with the desired goals.
文摘探究土地利用演变及其对碳储量的影响,对于减缓都市圈气候变化、促进绿色低碳发展具有重要意义。该研究在“双碳”目标背景下,结合兴趣点(point of interest,POI)数据并顾及斑块生成土地利用模拟模型(patch-generating land use simulation model,PLUS)进行双约束转移矩阵优化,耦合生态系统服务与权衡的综合评估(integrated valuation of ecosystem services and trade-offs,InVEST)模型分析山东省济南都市圈2000—2020年土地利用演变规律及其对生态系统碳储量的影响,模拟预测了自然发展、城镇发展和生态保护3种情景下济南都市圈2030年和2060年土地利用变化并估算其生态系统碳储量,分析其碳储量重心迁移情况,并利用参数最优地理探测器探究碳储量空间分异驱动因素。结果表明:①2000—2020年,济南都市圈耕地、草地和未利用地面积持续减少,林地面积呈波动增加状态,水域、建设用地面积增长迅速;②2000—2020年,济南都市圈碳储量及土地利用空间格局相似,以黄河主脉为分界线,呈现“东南高,西北低”的分布特征,耕地类型碳储量为研究区碳储量的主要来源,占总碳储量的80%以上;③多情景模拟下的碳储量均有所降低,主要原因为高碳密度区域耕地转换为低碳密度区域建设用地,其中生态保护情景碳储量最高,2030年总碳储量为4226.86×10^(6) t,2060年总碳储量为3967.94×10^(6) t;④不同发展时期和情景下的济南都市圈碳储量重心均发生一定偏移,发展趋势受土地利用变化影响,重心地带一直处于山东大学历城区,说明济南都市圈发展较为全面均衡;⑤各驱动因子对济南都市圈碳储量空间分布具有明显影响,其中人口密度对碳储量空间分异解释力最大,交互作用下各因子均呈现对碳储量解释力增强的结果。
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.
文摘This review paper presents an overview of simulation-based hydrodynamic design optimization of ship hull forms. A computational tool that is aimed to accomplishing early-stage simulation-based design in terms of hydrodynamic performance is discussed in detail. The main components of this computational tool consist of a hydrodynamic module, a hull surface modeling module, and an optimization module. The hydrodynamic module includes both design-oriented simple CFD tools and high-fidelity CFD tools. These integrated CFD tools are used for evaluating hydrodynamic performances at different design stages. The hull sur- face modeling module includes various techniques for ship hull surface representation and modification. This module is used to automatically produce hull forms or modify existing hull forms in terms of hydrodynamic performance and design constraints. The optimization module includes various optimization algorithms and surrogate models, which are used to determine optimal designs in terms of given hydrodynamic performance. As an illustration of the computational tool, a Series 60 hull is optimized for reduced drag using three different modification strategies to outline the specific procedure for conducting simulation-based hydrodynamic design of ship hull forms using the present tool. Numerical results show that the present tool is well suited for the hull form design optimization at early design stage because it can produce effective optimal designs within a short period of time.
文摘实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.