Fluxgate current sensors(FGCSs)are increasingly employed in power systems due to their high-precision characteristics,yet their measurement flexibility remains constrained by conventional closed-core designs.To addres...Fluxgate current sensors(FGCSs)are increasingly employed in power systems due to their high-precision characteristics,yet their measurement flexibility remains constrained by conventional closed-core designs.To address this limitation,we proposed a split-core sensor structure comprising four magnetic core strips,which achieved non-intrusive current measurement while maintaining detection accuracy.An analytical model of the induced electromotive force was established based on the probe’s geometric configuration,followed by finite element simulations to optimize key parameters including core radius,core width,excitation coil turns,and sensing coil configuration.A complete prototype integrating the measurement probe,excitation circuit,and signal processing circuitry was developed and experimentally validated.The experimental results show a sensitivity of 0.1099 V/A,a hysteresis error of 0.559%,and a repeatability error of 1.574%over a measurement range of±10 A.After polynomial fitting-based error compensation,the nonlinearity error was reduced to 0.208%,achieving performance comparable to closed-core sensors.This work provided a practical solution for applications demanding both high measurement accuracy and installation flexibility.展开更多
Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping c...Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping control mode, and presents a varying current amplitude chopping control method with a linear control model of varying current amplitude chopping shown, and the simulation of torque profiles under two kinds of current chopping control modes to demonstrate the validity of decreasing torque ripple.展开更多
In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydro...In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed.展开更多
The rip currents induced by waves off arc-shaped coastlines are seriously harmful to humans, but understanding of their characteristics is lacking. In this study, the FUNWAVE model was used to calculate the wave-induc...The rip currents induced by waves off arc-shaped coastlines are seriously harmful to humans, but understanding of their characteristics is lacking. In this study, the FUNWAVE model was used to calculate the wave-induced currents in the Haller experiment and the ideal arc-shaped coast similar to Sanya Dadonghai, Hainan Province,China. The results showed that the FUNWAVE model has considerable ability to simulate the rip currents, and it was used to further simulate rip currents off arc-shaped coastlines to investigate their characteristics. The rip currents were found to be stronger as the curvature of arc-shaped coastline increased. Coastal beach slope exerts a significant influence on rip currents; in particular, an overly steep or overly mild slope is not conducive to creating rip currents. Furthermore, the rip currents were found to become weaker as the size of arc-shaped coast decreased. When the height and period of waves increase, the strength of rip currents also increases, and, in some cases, wave heights of 0.4 m may produce dangerous rip currents.展开更多
By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow directio...By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow direction, and so on, is derived from the 3D governing equations of tidal current by averaging over the whole water depth. Theoretical analysis and application have shown that the 2D plane tidal current numerical model would be more reasonable and could be applied to steep bottom topography when the corrected bed resistance coefficient is used, therefore the results of reproduction simulation and engineering calculation would be more scientific and reasonable.展开更多
Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's...Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.展开更多
Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is prop...Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.展开更多
A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular gr...A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.展开更多
This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-h...This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.展开更多
Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is o...Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered.展开更多
This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupli...This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.展开更多
The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divid...The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.展开更多
The air-sea interactions with the submesoscale warm filament of the oceanic mixed layer are simulated by a coupled atmosphere-ocean model of the parallelized lager eddy simulation model.The results show that the warm ...The air-sea interactions with the submesoscale warm filament of the oceanic mixed layer are simulated by a coupled atmosphere-ocean model of the parallelized lager eddy simulation model.The results show that the warm core of the oceanic warm filament heats the bottom air of the atmospheric boundary layer,the rise of the bottom warm air results in the formation of the atmospheric warm filament.The variation in the width of the oceanic warm filament is generated by the change in the direction of the secondary circulations.The variation in the width of the atmospheric warm filament is created by that of the oceanic warm filament,because the direction of the secondary circulations of the atmospheric warm filament is invariable with time.The Coriolis effect results in the change in the direction of the secondary circulations for the oceanic warm filament.The secondary circulations of the atmospheric warm filament are produced by the rise of the bottom warm air caused by the oceanic warm filament,which leads to the unchanged direction of the secondary circulations.The thermal convection turbulence caused by the temperature difference of the ocean and atmosphere gradually weakens the structure of the oceanic and atmospheric warm filaments.展开更多
Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the ...Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.展开更多
Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques ar...Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.展开更多
By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for hi...By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for high Reynolds numbers is demonstrated quantitatively by LES (the Large Eddy Simulation) turbulence model. The gravity currents are simulated for h not equal H as well as h = H, where h is the depth of the gravity current before the release and H is the depth of the intruded fluid. Uprising of swell occurs when a current flows horizontally into another lighter one for h not equal H. The problems under what condition the uprising of swell occurs and how long it takes are considered in this article. All the simulated results are in reasonable agreement with the experimental results available.展开更多
To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UC...To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.展开更多
Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,ins...Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.展开更多
基金supported by Yunnan Fundamental Research Projects(No.202301AT070181)Yunnan Fundamental Research Projects(No.202401CF070126)+1 种基金Xingdian Talent Support Program of Yunnan Province(No.KKRD202203070)Yunnan High level Science and Technology Talents and Innovation Team Selection Special Project(No.202405AS350001).
文摘Fluxgate current sensors(FGCSs)are increasingly employed in power systems due to their high-precision characteristics,yet their measurement flexibility remains constrained by conventional closed-core designs.To address this limitation,we proposed a split-core sensor structure comprising four magnetic core strips,which achieved non-intrusive current measurement while maintaining detection accuracy.An analytical model of the induced electromotive force was established based on the probe’s geometric configuration,followed by finite element simulations to optimize key parameters including core radius,core width,excitation coil turns,and sensing coil configuration.A complete prototype integrating the measurement probe,excitation circuit,and signal processing circuitry was developed and experimentally validated.The experimental results show a sensitivity of 0.1099 V/A,a hysteresis error of 0.559%,and a repeatability error of 1.574%over a measurement range of±10 A.After polynomial fitting-based error compensation,the nonlinearity error was reduced to 0.208%,achieving performance comparable to closed-core sensors.This work provided a practical solution for applications demanding both high measurement accuracy and installation flexibility.
文摘Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping control mode, and presents a varying current amplitude chopping control method with a linear control model of varying current amplitude chopping shown, and the simulation of torque profiles under two kinds of current chopping control modes to demonstrate the validity of decreasing torque ripple.
基金National Natural Science Foundation of China under contract No.49776279National Excellent Youth Foundation of China under contract No.49825161
文摘In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed.
基金The National Natural Science Foundation under contract Nos 41206163,41076048 and 41376012the Operation Expenses for Universities'Basic Scientific Research of Central Authorities under contract Nos 2011B05714 and 2014B06514
文摘The rip currents induced by waves off arc-shaped coastlines are seriously harmful to humans, but understanding of their characteristics is lacking. In this study, the FUNWAVE model was used to calculate the wave-induced currents in the Haller experiment and the ideal arc-shaped coast similar to Sanya Dadonghai, Hainan Province,China. The results showed that the FUNWAVE model has considerable ability to simulate the rip currents, and it was used to further simulate rip currents off arc-shaped coastlines to investigate their characteristics. The rip currents were found to be stronger as the curvature of arc-shaped coastline increased. Coastal beach slope exerts a significant influence on rip currents; in particular, an overly steep or overly mild slope is not conducive to creating rip currents. Furthermore, the rip currents were found to become weaker as the size of arc-shaped coast decreased. When the height and period of waves increase, the strength of rip currents also increases, and, in some cases, wave heights of 0.4 m may produce dangerous rip currents.
基金National Natural Science Foundation of China(Grant No.49971064)
文摘By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow direction, and so on, is derived from the 3D governing equations of tidal current by averaging over the whole water depth. Theoretical analysis and application have shown that the 2D plane tidal current numerical model would be more reasonable and could be applied to steep bottom topography when the corrected bed resistance coefficient is used, therefore the results of reproduction simulation and engineering calculation would be more scientific and reasonable.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract Nos 41476032,91028009 and 40806019
文摘Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.
基金National Natural Science Foundation of China(11572094,5171101175,51809083)。
文摘Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAB12B02)Key Technologies Research and Development Program of Tianjin (14ZCZDSF00012)
文摘A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.
基金supported by National Natural Science Foundation of China (Nos.51177124,51007072)the Doctoral Foundation of Ministry of Education of China (Nos.20110201130006,20110201120069)China Postdoctoral Science Foundation (No.2012M512002)
文摘This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.511-0910-1031)
文摘Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered.
文摘This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
文摘The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.
基金The Scientific Research Fund for Doctor/Professor of Hezhou University under contract No.2024BSQD01the National Natural Science Foundation of China under contract No.42466001the project supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2023SP240。
文摘The air-sea interactions with the submesoscale warm filament of the oceanic mixed layer are simulated by a coupled atmosphere-ocean model of the parallelized lager eddy simulation model.The results show that the warm core of the oceanic warm filament heats the bottom air of the atmospheric boundary layer,the rise of the bottom warm air results in the formation of the atmospheric warm filament.The variation in the width of the oceanic warm filament is generated by the change in the direction of the secondary circulations.The variation in the width of the atmospheric warm filament is created by that of the oceanic warm filament,because the direction of the secondary circulations of the atmospheric warm filament is invariable with time.The Coriolis effect results in the change in the direction of the secondary circulations for the oceanic warm filament.The secondary circulations of the atmospheric warm filament are produced by the rise of the bottom warm air caused by the oceanic warm filament,which leads to the unchanged direction of the secondary circulations.The thermal convection turbulence caused by the temperature difference of the ocean and atmosphere gradually weakens the structure of the oceanic and atmospheric warm filaments.
文摘Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.
基金Supported by National High-Tech Industry Development Project (1883)
文摘Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.
基金This paper was supported by the National Natural Science Foundation of China (Grant No.19972061)
文摘By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for high Reynolds numbers is demonstrated quantitatively by LES (the Large Eddy Simulation) turbulence model. The gravity currents are simulated for h not equal H as well as h = H, where h is the depth of the gravity current before the release and H is the depth of the intruded fluid. Uprising of swell occurs when a current flows horizontally into another lighter one for h not equal H. The problems under what condition the uprising of swell occurs and how long it takes are considered in this article. All the simulated results are in reasonable agreement with the experimental results available.
基金Sponsored by the Heilongjiang 11th Five-year Key Project of Scientific and Technological(Grant No.GA06A305)
文摘To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.
基金funded by the National Key R&D Program of China(Grant No.2023YFA1608400)the National Natural Science Foundation of China(Grant No.12302281).
文摘Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.